Eduardo José Nassar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1289956/publications.pdf

Version: 2024-02-01

236925 302126 2,269 123 25 39 citations h-index g-index papers 123 123 123 2337 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	New synthesis strategies for effective functionalization of kaolinite and saponite with silylating agents. Journal of Colloid and Interface Science, 2010, 341, 186-193.	9.4	85
2	Porphyrinâ 'Kaolinite as Efficient Catalyst for Oxidation Reactions. ACS Applied Materials & Emp; Interfaces, 2009, 1, 2667-2678.	8.0	71
3	Preparation and characterization of spherical silica–porphyrin catalysts obtained by the sol–gel methodology. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 275, 27-35.	4.7	65
4	Red, green and blue (RGB) emission doped Y3Al5O12 (YAG) phosphors prepared by non-hydrolytic sol–gel route. Journal of Luminescence, 2010, 130, 488-493.	3.1	65
5	New Highly Luminescent Hybrid Materials: Terbium Pyridineâ^'Picolinate Covalently Grafted on Kaolinite. ACS Applied Materials & Samp; Interfaces, 2011, 3, 1311-1318.	8.0	65
6	Kaolinite-titanium oxide nanocomposites prepared via sol-gel as heterogeneous photocatalysts for dyes degradation. Catalysis Today, 2015, 246, 133-142.	4.4	61
7	Organically Modified Saponites: SAXS Study of Swelling and Application in Caffeine Removal. ACS Applied Materials & Samp; Interfaces, 2015, 7, 10853-10862.	8.0	58
8	Hybrid materials prepared by interlayer functionalization of kaolinite with pyridine-carboxylic acids. Journal of Colloid and Interface Science, 2009, 335, 210-215.	9.4	52
9	Microwave synthesis of YAG:Eu by sol–gel methodology. Journal of Luminescence, 2007, 126, 378-382.	3.1	51
10	Organic complexes of Eu3+ supported in functionalized silica gel: highly luminescent material. Journal of Alloys and Compounds, 1994, 207-208, 454-456.	5.5	50
11	Green and selective oxidation reactions catalyzed by kaolinite covalently grafted with Fe(III) pyridine-carboxylate complexes. Catalysis Today, 2012, 187, 135-149.	4.4	50
12	Luminescence study of the [Eu(bpy)2]3+ supported on Y zeolite. Journal of Luminescence, 1997, 72-74, 532-534.	3.1	49
13	Functionalized silica synthesized by sol–gel process. Journal of Non-Crystalline Solids, 1999, 247, 124-128.	3.1	43
14	Titania-based organic–inorganic hybrid planar waveguides. Journal of Alloys and Compounds, 2002, 344, 221-225.	5.5	42
15	Ureasil-Poly(ethylene oxide) Hybrid Matrix for Selective Adsorption and Separation of Dyes from Water. Langmuir, 2014, 30, 3857-3868.	3.5	42
16	Synthesis of Zeolite A from Metakaolin and Its Application in the Adsorption of Cationic Dyes. Applied Sciences (Switzerland), 2018, 8, 608.	2.5	41
17	Europium incorporated in silica matrix obtained by sol-gel: luminescent materials. Materials Research, 2003, 6, 557-562.	1.3	39
18	Nonhydrolytic sol-gel synthesis and characterization of YAG. Journal of Materials Science, 2007, 42, 2244-2249.	3.7	35

#	Article	IF	Citations
19	Aluminosilicate obtained by sol–gel process as support for an anionic iron porphyrin: Development of a selective and reusable catalyst for oxidation reactions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 349, 162-169.	4.7	35
20	Eu(III) incorporation in sol–gel aluminum–yttrium matrix by non-hydrolytic route. Journal of Luminescence, 2005, 111, 159-166.	3.1	34
21	Spherical hybrid silica particles modified by methacrylate groups. Journal of Sol-Gel Science and Technology, 2007, 43, 21-26.	2.4	33
22	XPS characterization and luminescent properties of GdNbO4 and GdTaO4 thin films. Applied Surface Science, 2020, 504, 144358.	6.1	33
23	Sol-Gel TiO2 thin films sensitized with the mulberry pigment cyanidin. Materials Research, 2007, 10, 413-417.	1.3	31
24	Estudo das condições de estocagem do bagaço de cana-de-açúcar por análise térmica. Quimica Nova, 2011, 34, 507-511.	0.3	30
25	Influência da catálise ácida e básica na preparação da sÃŀica funcionalizada pelo método sol-gel. Quimica Nova, 2002, 25, 27-31.	0.3	27
26	Preparation and properties of europium-doped phosphosilicate glasses obtained by the sol–gel method. Journal of Non-Crystalline Solids, 2008, 354, 4806-4810.	3.1	25
27	Iron-alumina materials prepared by the non-hydrolytic sol–gel route: Synthesis, characterization and application in hydrocarbons oxidation using hydrogen peroxide as oxidant. Applied Catalysis A: General, 2010, 389, 147-154.	4.3	25
28	Influence of Catalyses on the Preparation of YVO4:Eu3+ Phosphors by the Sol–gel Methodology. Journal of Fluorescence, 2012, 22, 899-906.	2.5	25
29	Tri-ureasil gel as a multifunctional organic–inorganic hybrid matrix. Polymer Chemistry, 2013, 4, 1575-1582.	3.9	25
30	Versatile heterogeneous dipicolinate complexes grafted into kaolinite: Catalytic oxidation of hydrocarbons and degradation of dyes. Catalysis Today, 2014, 227, 105-115.	4.4	25
31	Photophysical properties of Ce3+:Tb3+ supported on silicas and zeolites. Journal of Alloys and Compounds, 1995, 225, 63-65.	5.5	24
32	Eu (III) as a probe in titania thin films: The effect of temperature. Materials Chemistry and Physics, 2007, 101, 238-241.	4.0	24
33	Eu3+ entrapped in alumina matrix obtained by hydrolytic and non-hydrolytic sol–gel routes. Journal of Non-Crystalline Solids, 2002, 304, 126-133.	3.1	23
34	Influence of the hydrolysis and condensation time on the preparation of hybrid materials. Materials Research, 2011, 14, 1-6.	1.3	23
35	Tetracarboxyphenylporphyrin–Kaolinite Hybrid Materials as Efficient Catalysts and Antibacterial Agents. Journal of Physical Chemistry C, 2014, 118, 24562-24574.	3.1	23
36	Poly(I-lactic acid) membranes: Absence of genotoxic hazard and potential for drug delivery. Toxicology Letters, 2015, 232, 513-518.	0.8	23

#	Article	lF	CITATIONS
37	Aminoiron(III)–porphyrin–alumina catalyst obtained by non-hydrolytic sol-gel process for heterogeneous oxidation of hydrocarbons. Molecular Catalysis, 2019, 462, 114-125.	2.0	23
38	Synthesis and photoluminescent properties of yttrium vanadate phosphor prepared by the non-hydrolytic sol–gel process. Journal of Luminescence, 2014, 147, 190-195.	3.1	22
39	Incorporation of anti-inflammatory agent into mesoporous silica. Nanotechnology, 2016, 27, 385103.	2.6	21
40	Functionalization of luminescent YVO4:Eu3+ nanoparticles by sol–gel. Journal of Luminescence, 2015, 159, 93-99.	3.1	20
41	Encapsulation of Tetraazaannulenato Compounds in Matrix by Sol-Gel Process. Journal of Sol-Gel Science and Technology, 2003, 28, 57-64.	2.4	19
42	Preparation of a GdCaAl3O7 matrix by the non-hydrolytic sol–gel route. Journal of Luminescence, 2009, 129, 1120-1124.	3.1	19
43	Europium(III)-doped yttrium vanadate nanoparticles reduce the toxicity of cisplatin. Journal of Inorganic Biochemistry, 2018, 182, 9-17.	3. 5	19
44	Preparation, alumina-pillaring and oxidation catalytic performances of synthetic Ni-saponite. Microporous and Mesoporous Materials, 2009, 117, 309-316.	4.4	18
45	Aluminate matrix doped with Tm3+/Tb3+/Eu3+ obtained by non-hydrolytic sol–gel route: White light emission. Journal of Luminescence, 2014, 146, 394-397.	3.1	18
46	Preparation and characterization of isostructural lanthanide Eu/Gd/Tb metal-organic framework thin films for luminescent applications. Applied Surface Science, 2021, 542, 148731.	6.1	17
47	Examination of the Hydrotropic Effect of Sodium p -Toluenesulfonate on a Nonionic Surfactant (C 12) Tj ETQq1	1 0,784314	4 rgBT /Overlo
48	Sol–gel entrapped cobalt complex. Materials Characterization, 2003, 50, 101-108.	4.4	16
49	Influence on deposition speed and stirring type in the obtantion of titania films. Materials Chemistry and Physics, 2004, 85, 245-250.	4.0	16
50	Preparation of composites of laponite with alginate and alginic acid polysaccharides. Polymer International, 2012, 61, 1170-1176.	3.1	16
51	Fenilsilicato dopado com Eu III obtido pelo método sol-gel. Quimica Nova, 2007, 30, 1567-1572.	0.3	15
52	Preparation of calcium fluoroaluminosilicate glasses containing sodium and phosphorus by the nonhydrolytic sol–gel method. Journal of Alloys and Compounds, 2009, 472, 299-306.	5 . 5	15
53	<pont face="Symbol">b /font>-diketonates of Eu3+, red phosphors, supported on sol-gel functionalised silica. Materials Research, 2001, 4, 18-22.</pont>	1.3	14
54	Filmes de titânio-silÃcio preparados por "spin" e "dip-coating". Quimica Nova, 2003, 26, 674-677.	0.3	14

#	Article	IF	CITATIONS
55	Synthesis and luminescent properties of gadolinium aluminates phosphors. Inorganica Chimica Acta, 2011, 375, 63-69.	2.4	14
56	Influence of Bi3+ ions on the excitation wavelength of the YVO4:Eu3+ matrix. Optical Materials, 2016, 62, 12-18.	3.6	14
57	Kaolinite-polymer compounds by grafting of 2-hydroxyethyl methacrylate and 3-(trimethoxysilyl)propyl methacrylate. Applied Clay Science, 2017, 146, 526-534.	5.2	14
58	Catalytic activity of porphyrin-catalyts immobilized on kaolinite. Applied Clay Science, 2019, 168, 469-477.	5.2	14
59	Anti-Melanoma Activity of Indomethacin Incorporated into Mesoporous Silica Nanoparticles. Pharmaceutical Research, 2020, 37, 172.	3.5	14
60	Photophysical properties of Eu3+ supported on silica gel functionalized with propyl \hat{l}^2 -diketonates. Journal of Alloys and Compounds, 1997, 250, 380-382.	5.5	13
61	Europium incorporated into titanium oxide by the sol-gel method. Materials Research, 2005, 8, 361-364.	1.3	13
62	Coating of polyamide 12 by sol–gel methodology. Journal of Thermal Analysis and Calorimetry, 2014, 115, 1029-1035.	3.6	13
63	Eu ³⁺ - and Tb ³⁺ -Dipicolinate Complexes Covalently Grafted into Kaolinite as Luminescence-Functionalized Clay Hybrid Materials. Journal of Physical Chemistry C, 2017, 121, 5081-5088.	3.1	13
64	Óxido misto de Ãŧrio-alumÃnio dopado com Eu(III). Quimica Nova, 2005, 28, 238-243.	0.3	13
65	Synthesis and some properties of hybrid gels of titanium oxide containing europium (III). Journal of Non-Crystalline Solids, 1999, 247, 120-123.	3.1	12
66	Sol-gel as methodology to obtain bioactive materials. Anais Da Academia Brasileira De Ciencias, 2014, 86, 27-36.	0.8	12
67	Inorganic–organic hybrids based on sepiolite as efficient adsorbents of caffeine and glyphosate pollutants. Applied Surface Science Advances, 2020, 1, 100025.	6.8	12
68	Incorporation of europium III complex into nanoparticles and films obtained by the Sol-Gel methodology. Materials Research, 2010, 13, 71-75.	1.3	11
69	Synthesis of indium tin oxide nanoparticles by a nonhydrolytic sol-gel method. Quimica Nova, 2012, 35, 473-476.	0.3	11
70	Troca iônica no estado sólido de európio3+ em zeólita Y: influência do tempo de reação. Quimica Nova, 1998, 21, 121.	0.3	10
71	Synthesis of (\hat{a}°) -hinokinin by oxidation of (\hat{a}°) -cubebin catalyzed by biomimetic metalloporphyrin catalytic systems. Catalysis Communications, 2009, 10, 669-672.	3.3	10
72	Takovite–Aluminosilicate–Cr Materials Prepared by Adsorption of Cr ³⁺ from Industrial Effluents As Catalysts for Hydrocarbon Oxidation Reactions. ACS Applied Materials & Diterfaces, 2012, 4, 2525-2533.	8.0	10

#	Article	IF	CITATIONS
7 3	Immobilization of metallophthalocyanines on hybrid materials and in-situ synthesis of pseudo-tubular structures from an aminofunctionalized kaolinite. Dyes and Pigments, 2014, 100, 17-23.	3.7	10
74	Preparation of YVO4:Eu3+ at low temperature by the hydrolytic sol–gel methodology. Journal of Sol-Gel Science and Technology, 2015, 73, 283-292.	2.4	10
7 5	New strategies for synthesis and immobilization of methalophtalocyanines onto kaolinite: Preparation, characterization and chemical stability evaluation. Dyes and Pigments, 2016, 134, 41-50.	3.7	10
76	Use of polymeric resin in the formation of SiO2 hybrid gels. Journal of Non-Crystalline Solids, 1999, 247, 114-119.	3.1	9
77	Nitro-Porphyrin Entrapped in a Silica Matrix by Sol-Gel Methodology. Journal of Sol-Gel Science and Technology, 2003, 26, 329-334.	2.4	9
78	Two-dimensional low resolution raman spectroscopy applied to fast discrimination of clinically relevant microorganisms: a whole-organism fingerprinting approach. Journal of the Brazilian Chemical Society, 2006, 17, 73-78.	0.6	9
79	Characterization of the calcium-fluoroaluminosilicate glass prepared by a non-hydrolytic sol-gel route for future dental application as glass ionomer cement. Materials Research, 2009, 12, 139-143.	1.3	9
80	Nanospherical Silica as Luminescent Markers Obtained by Sol–Gel. Journal of Fluorescence, 2015, 25, 433-440.	2.5	9
81	Electronic properties and metal-ligand bonding situation in Eu(III) complexes containing tris(pyrazolyl)borate and phenantroline ligands. Journal of Luminescence, 2017, 182, 137-145.	3.1	9
82	White and Red Brazilian São Simão's Kaolinite–TiO2 Nanocomposites as Catalysts for Toluene Photodegradation from Aqueous Solutions. Materials, 2019, 12, 3943.	2.9	9
83	Thermoanalysis of soybean oil extracted by two methods. Quimica Nova, 2008, 31, 527-529.	0.3	8
84	Synthesis and biocompatibility of an experimental glass ionomer cement prepared by a non-hydrolytic sol-gel method. Brazilian Dental Journal, 2010, 21, 499-507.	1.1	8
85	Ultraviolet sensors using a luminescent europium (III) complex on acrylonitrile butadiene styrene polymer. Journal of Materials Research, 2012, 27, 2088-2095.	2.6	8
86	Effect of calcium phosphate coating on polyamide substrate for biomaterial applications. Journal of the Brazilian Chemical Society, 2012, 23, 810-817.	0.6	8
87	Solubility enhancement of ibuprofen using tri-ureasil-PPO hybrid: structural, cytotoxic, and drug release investigation. Journal of Sol-Gel Science and Technology, 2014, 72, 627-636.	2.4	8
88	Non-hydrolytic Sol–Gel Route: a Powerful Process to Develop UV-Vis-IR Luminescent YVO4 Phosphors. Journal of Fluorescence, 2020, 30, 827-837.	2.5	8
89	Effect of ytterbium amount on LaNbO4:Tm3+,Yb3+ nanoparticles for bio-labelling applications. Advances in Medical Sciences, 2020, 65, 324-331.	2.1	8
90	Solid state reaction between europium III chloride and Y-zeolites. Materials Chemistry and Physics, 2002, 74, 19-22.	4.0	7

#	Article	IF	CITATIONS
91	Incorporation of the chemotherapy medication cisplatin into polyamide membrane. Journal of Inorganic Biochemistry, 2018, 180, 171-178.	3.5	7
92	Effect of silica coating on the catalytic activity of maghemite nanoparticles impregnated into mesoporous silica matrix. Materials Chemistry and Physics, 2019, 225, 145-152.	4.0	7
93	Antitumor activity of solamargine in mouse melanoma model: relevance to clinical safety. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2022, 85, 131-142.	2.3	7
94	Optical properties of Eu-doped hybrid materials prepared from dimethyl and methyl alkoxides precursors. Journal of Luminescence, 2013, 134, 551-557.	3.1	6
95	Yttrium aluminum garnet coating on glass substrate. Journal of Luminescence, 2016, 170, 686-691.	3.1	6
96	Effect of gadolinium incorporation on the structure and luminescence properties of niobium-based materials. Nanotechnology, 2018, 29, 235204.	2.6	6
97	Adsorption-Based Synthesis of Environmentally Friendly Heterogeneous Chromium(III) Catalysts for Oxidation Reactions into Kaolinite, Saponite, and Their Amine-Modified Derivatives. ACS Applied Nano Materials, 2018, 1, 3867-3877.	5.0	6
98	Silver nanoparticle incorporation into flexible polyamide 12 membranes. Journal of Sol-Gel Science and Technology, 2022, 102, 219-228.	2.4	6
99	Preparation and characterization of silicate nanofilms doped with europium \hat{l}^2 -diketonate complexes. Thin Solid Films, 2012, 520, 6541-6546.	1.8	5
100	Cr3+ Doped Al2O3 Obtained by Non-Hydrolytic Sol-Gel Methodology. Journal of the Brazilian Chemical Society, 2018, , .	0.6	5
101	NIR Luminescence Enhancement of YVO4:Nd Phosphor for Biological Application. Journal of Fluorescence, 2021, 31, 209-217.	2.5	5
102	Incorporation of indomethacin into a mesoporous silica nanoparticle enhances the anti-inflammatory effect Indomethacin into a mesoporous silica. European Journal of Pharmaceutical Sciences, 2021, 157, 105601.	4.0	5
103	Materiais hÃbridos orgânico-inorgânicos (ormosil) obtidos por sol-gel com potencial uso como filtro solar. Quimica Nova, 2011, 34, 945-949.	0.3	5
104	Nanostructure and Luminescent Properties of Bimetallic Lanthanide Eu/Gd, Tb/Gd and Eu/Tb Coordination Polymers. Inorganics, 2021, 9, 77.	2.7	5
105	Aproveitamento da glicerina proveniente da produção de biodiesel na obtenção de hÃbrido de caulinita para adsorção de Cr3+. Quimica Nova, 2012, 35, 1407-1411.	0.3	4
106	Photoinitiator and anesthetic incorporation into mesoporous silica. Powder Technology, 2018, 326, 62-68.	4.2	4
107	Kaolinite/TiO2/cobalt(II) Tetracarboxymetallophthalocyanine Nanocomposites as Heterogeneous Photocatalysts for Decomposition of Organic Pollutants Trimethoprim, Caffeine and Prometryn. Journal of the Brazilian Chemical Society, 0, , .	0.6	4
108	Multi-color emission from lanthanide ions doped into niobium oxide. Journal of Materials Science: Materials in Electronics, 2020, 31, 5241-5252.	2.2	4

#	Article	IF	Citations
109	Propriedades fotofÃsicas de Eu3+ e Tb3+ imobilizados em sÃłica gel funcionalizada com beta-Dicetonas. Quimica Nova, 2000, 23, 16.	0.3	3
110	Non-hydrolytic sol-gel synthesis of mesoporous iron-aluminum oxide and their properties in the oxidation of hydrocarbons by hydrogen peroxide. Microporous and Mesoporous Materials, 2021, 325, 111317.	4.4	3
111	pH Affects Sol–Gel Formation of Core–Shell Mesoporous Silica Coatings on Polyamide. Industrial & Lamp; Engineering Chemistry Research, 2013, 52, 779-784.	3.7	2
112	Luminescent mesoporous films containing europium III complex. Microporous and Mesoporous Materials, 2019, 277, 179-183.	4.4	2
113	TiO2 films obtained by the sol–gel process and doped with Yb3+ and Er3+ ions. Journal of Sol-Gel Science and Technology, 2021, 97, 548-555.	2.4	2
114	Hydroxyapatite incorporation into polyamide membrane. Materials Chemistry and Physics, 2021, 271, 124877.	4.0	2
115	Er3+/Yb3+-Doped GdVO4 Obtained by the Non-Hydrolytic Sol-Gel Route and Potential Application as Up-Conversion Thermometer. Journal of the Brazilian Chemical Society, $0, , .$	0.6	2
116	A Spectroscopic Study of Eu3+/ Hexamethylphosphoramide (hmpa) with Hexafluorophosphate and Perchlorate anions. Journal of the Brazilian Chemical Society, 1995, 6, 235-241.	0.6	2
117	The preparation of benzyl esters using stoichiometric niobium (V) chloride versus niobium grafted SiO2 catalyst: A comparison study. Heliyon, 2018, 4, e00571.	3.2	1
118	Manganese-doped titania matrix obtained by sol-gel process: Magnetic properties. Microelectronic Engineering, 2018, 196, 49-53.	2.4	1
119	Niobium oxide doped with Tm3+ and Gd3+ ions for multimodal imaging in biology. Journal of Sol-Gel Science and Technology, 2020, 93, 546-553.	2.4	1
120	Glass slides or solar cells. Which are better to improve solar energy efficiency?. Journal of Materials Science: Materials in Electronics, 2021, 32, 15151.	2.2	1
121	Luminescence properties of neodymium, samarium, and europium niobate and tantalate thin films. Luminescence, 2022, 37, 642-655.	2.9	1
122	(â^')-Hinokinin antimicrobial agents into functionalized mesoporous silica. Journal of Sol-Gel Science and Technology, 2021, 98, 342-350.	2.4	0
123	Grafting of L-proline and L-phenylalanine amino acids on kaolinite through synthesis catalyzed by boric acid. Applied Surface Science Advances, 2021, 4, 100081.	6.8	0