

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1288702/publications.pdf Version: 2024-02-01

\\/FI\\/FI

#	Article	IF	CITATIONS
1	Exploring drivers of the aggravated surface O3 over North China Plain in summer of 2015–2019: Aerosols, precursors, and meteorology. Journal of Environmental Sciences, 2023, 127, 453-464.	6.1	10
2	Attenuated sensitivity of ozone to precursors in Beijing–Tianjin–Hebei region with the continuous NOx reduction within 2014–2018. Science of the Total Environment, 2022, 813, 152589.	8.0	14
3	The impacts of VOCs on PM2.5 increasing via their chemical losses estimates: A case study in a typical industrial city of China. Atmospheric Environment, 2022, 273, 118978.	4.1	11
4	Nonlinear influence of winter meteorology and precursor on PM2.5 based on mathematical and numerical models: A COVID-19 and Winter Olympics case study. Atmospheric Environment, 2022, , 119072.	4.1	7
5	The Independent Impacts of PM2.5 Dropping on the Physical and Chemical Properties of Atmosphere over North China Plain in Summer during 2015–2019. Sustainability, 2022, 14, 3930.	3.2	0
6	Exploring the causes for co-pollution of O3 and PM2.5 in summer over North China. Environmental Monitoring and Assessment, 2022, 194, 289.	2.7	8
7	Quantitation study on VOC emissions and their reduction potential for coking industry in China: Based on in-situ measurements on treated and untreated plants. Science of the Total Environment, 2022, 836, 155466.	8.0	9
8	Significant impacts of NO ₂ and NH ₃ on the sulfate formations on the surface of nano MgO particles in a smog chamber. Environmental Science: Nano, 2022, 9, 2470-2487.	4.3	2
9	Impacts of Meteorology and Emissions on O3 Pollution during 2013–2018 and Corresponding Control Strategy for a Typical Industrial City of China. Atmosphere, 2021, 12, 619.	2.3	7
10	Evaluation of continuous emission reduction effect on PM2.5 pollution improvement through 2013–2018 in Beijing. Atmospheric Pollution Research, 2021, 12, 101055.	3.8	6
11	Insights into atmospheric oxidation capacity and its impact on PM2.5 in megacity Beijing via volatile organic compounds measurements. Atmospheric Research, 2021, 258, 105632.	4.1	5
12	Composition analysis and formation pathway comparison of PM1 between two pollution episodes during February 2017 in Beijing, China. Atmospheric Environment, 2020, 223, 117223.	4.1	7
13	Mixing layer height estimated from AMDAR and its relationship with PMs and meteorological parameters in two cities in North China during 2014–2017. Atmospheric Pollution Research, 2020, 11, 443-453.	3.8	14
14	Peroxyacetyl nitrate (PAN) in the border of Beijing, Tianjin and Hebei of China: Concentration, source apportionment and photochemical pollution assessment. Atmospheric Research, 2020, 246, 105106.	4.1	18
15	Source estimation of SO42â^' and NO3â^' based on monitoring-modeling approach during winter and summer seasons in Beijing and Tangshan, China. Atmospheric Environment, 2019, 214, 116849.	4.1	5
16	Characteristics of PM2.5 and SNA components and meteorological factors impact on air pollution through 2013–2017 in Beijing, China. Atmospheric Pollution Research, 2019, 10, 1976-1984.	3.8	30
17	Sensitivity of summer ozone to precursor emission change over Beijing during 2010–2015: A WRF-Chem modeling study. Atmospheric Environment, 2019, 218, 116984.	4.1	27
18	Characteristics and source apportionment of atmospheric volatile organic compounds in Beijing, China. Environmental Monitoring and Assessment, 2019, 191, 762.	2.7	8

WEI WEI

#	Article	IF	CITATIONS
19	A monitoring-modeling approach to SO42â^' and NO3â^' secondary conversion ratio estimation during haze periods in Beijing, China. Journal of Environmental Sciences, 2019, 78, 293-302.	6.1	15
20	Insights into submicron particulate evolution, sources and influences on haze pollution in Beijing, China. Atmospheric Environment, 2019, 201, 360-368.	4.1	18
21	Characteristics and classification of PM2.5 pollution episodes in Beijing from 2013 to 2015. Science of the Total Environment, 2018, 612, 170-179.	8.0	83
22	A WRF-Chem model study of the impact of VOCs emission of a huge petro-chemical industrial zone on the summertime ozone in Beijing, China. Atmospheric Environment, 2018, 175, 44-53.	4.1	26
23	A comprehensive classification method for VOC emission sources to tackle air pollution based on VOC species reactivity and emission amounts. Journal of Environmental Sciences, 2018, 67, 78-88.	6.1	61
24	Characteristics of VOCs during haze and non-haze days in Beijing, China: Concentration, chemical degradation and regional transport impact. Atmospheric Environment, 2018, 194, 134-145.	4.1	53
25	Speciated VOCs emission estimate for a typical petrochemical manufacturing plant in China using inverse-dispersion calculation method. Environmental Monitoring and Assessment, 2018, 190, 451.	2.7	11
26	Characteristics and emission-reduction measures evaluation of PM 2.5 during the two major events: APEC and Parade. Science of the Total Environment, 2017, 595, 81-92.	8.0	78
27	VOCs emission rate estimate for complicated industrial area source using an inverse-dispersion calculation method: A case study on a petroleum refinery in Northern China. Environmental Pollution, 2016, 218, 681-688.	7.5	61
28	Characteristics and source apportionment of VOCs in the suburban area of Beijing, China. Atmospheric Pollution Research, 2016, 7, 711-724.	3.8	97
29	Application of Weather Research and Forecasting Model with Chemistry (WRF/Chem) over northern China: Sensitivity study, comparative evaluation, and policy implications. Atmospheric Environment, 2016, 124, 337-350.	4.1	60
30	Source apportionment of PM 2.5 in top polluted cities in Hebei, China using the CMAQ model. Atmospheric Environment, 2015, 122, 723-736.	4.1	108
31	The changes and long-range transport of PM2.5 in Beijing in the past decade. Atmospheric Environment, 2015, 110, 186-195.	4.1	46
32	Characterizing ozone pollution in a petrochemical industrial area in Beijing, China: a case study using a chemical reaction model. Environmental Monitoring and Assessment, 2015, 187, 377.	2.7	27
33	Chemical Characteristics of Fine Particles Emitted from Different Chinese Cooking Styles. Aerosol and Air Quality Research, 2015, 15, 2357-2366.	2.1	53
34	Characteristics of ozone and ozone precursors (VOCs and NOx) around a petroleum refinery in Beijing, China. Journal of Environmental Sciences, 2014, 26, 332-342.	6.1	63
35	Trends of chemical speciation profiles of anthropogenic volatile organic compounds emissions in China, 2005–2020. Frontiers of Environmental Science and Engineering, 2014, 8, 27-41.	6.0	53
36	Characteristics of volatile organic compounds (VOCs) emitted from a petroleum refinery in Beijing, China. Atmospheric Environment, 2014, 89, 358-366.	4.1	139

WEI WEI

#	Article	IF	CITATIONS
37	A study on the trends of vehicular emissions in the Beijing–Tianjin–Hebei (BTH) region, China. Atmospheric Environment, 2012, 62, 605-614.	4.1	100
38	Projection of anthropogenic volatile organic compounds (VOCs) emissions in China for the period 2010–2020. Atmospheric Environment, 2011, 45, 6863-6871.	4.1	87
39	Emission and speciation of non-methane volatile organic compounds from anthropogenic sources in China. Atmospheric Environment, 2008, 42, 4976-4988.	4.1	242