Jonathan H Harrhy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1288621/publications.pdf

Version: 2024-02-01

394421 302126 1,647 51 19 39 citations g-index h-index papers 53 53 53 1926 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	The function of porous working electrodes for hydrogen production from water splitting in non-thermal plasma reactor. Fuel, 2022, 310, 122156.	6.4	5
2	Nonthermal Plasma (NTP)-Assisted Catalytic Conversion of Methane and Other Hydrocarbons. , 2022, , 133-162.		1
3	Organic solid waste upgrading under natural gas for valuable liquid products formation: Pilot demonstration of a highly integrated catalytic process. Bioresource Technology, 2022, 346, 126645.	9.6	5
4	Synthesis of multi-alkylpolyamines and their performance as flow improver in crude oil. Tenside, Surfactants, Detergents, 2022, 59, 104-110.	1.2	9
5	Environmentally benign methane-regulated catalytic desulfurization. Applied Catalysis B: Environmental, 2022, 312, 121436.	20.2	7
6	Highly selective skeletal isomerization of cyclohexene over zeolite-based catalysts for high-purity methylcyclopentene production. Communications Chemistry, 2021, 4, .	4.5	5
7	Catalytic asphaltene upgrading under methane environment: Solvent effect and its interaction with oil components. Fuel, 2021, 291, 120157.	6.4	12
8	A residue-free approach to water disinfection using catalytic in situ generation of reactive oxygen species. Nature Catalysis, 2021, 4, 575-585.	34.4	73
9	Non-thermal plasma assisted catalytic reforming of naphtha and its model compounds with methane at near ambient conditions. Applied Catalysis B: Environmental, 2021, 297, 120459.	20.2	16
10	The interactive role of methane beyond a reactant in crude oil upgrading. Communications Chemistry, 2021, 4, .	4.5	8
11	Highly Selective Aromatization of Octane over Pt–Zn/UZSM-5: The Effect of Pt–Zn Interaction and Pt Position. ACS Applied Materials & District Sciences, 2020, 12, 28273-28287.	8.0	21
12	Non-thermal plasma induced photocatalytic conversion of light alkanes into high value-added liquid chemicals under near ambient conditions. Chemical Communications, 2020, 56, 5263-5266.	4.1	4
13	Participation of methane in an economically and environmentally favorable catalytic asphaltene upgrading process. Chemical Communications, 2020, 56, 5492-5495.	4.1	11
14	Inhibiting the Dealkylation of Basic Arenes during <i>n</i> -Alkane Direct Aromatization Reactions and Understanding the C ₆ Ring Closure Mechanism. ACS Catalysis, 2020, 10, 8428-8443.	11.2	23
15	One-pot direct conversion of bamboo to aromatics under methane. Fuel, 2020, 267, 117196.	6.4	7
16	Nonthermal Plasma-Assisted Photocatalytic Conversion of Simulated Natural Gas for High-Quality Gasoline Production near Ambient Conditions. Journal of Physical Chemistry Letters, 2020, 11, 3877-3881.	4.6	18
17	Heavy oil catalytic upgrading under methane environment: A small pilot plant evaluation. Fuel, 2019, 258, 116161.	6.4	17
18	Solvent-free catalytic conversion of xylose with methane to aromatics over Zn-Cr modified zeolite catalyst. Fuel, 2019, 253, 988-996.	6.4	6

#	Article	IF	CITATIONS
19	Multi-crystalline N-doped Cu/CuxO/C foam catalyst derived from alkaline N-coordinated HKUST-1/CMC for enhanced 4-nitrophenol reduction. Journal of Colloid and Interface Science, 2019, 553, 1-13.	9.4	50
20	Nonthermal plasma-catalytic conversion of biogas to liquid chemicals with low coke formation. Energy Conversion and Management, 2019, 191, 93-101.	9.2	35
21	Understanding zeolite deactivation by sulfur poisoning during direct olefin upgrading. Communications Chemistry, 2019, 2, .	4.5	4
22	Conversion of naphthalene as model compound of polyaromatics to mono-aromatic hydrocarbons under the mixed hydrogen and methane atmosphere. Fuel, 2019, 243, 469-477.	6.4	10
23	Highly selective aromatization and isomerization of <i>n</i> i>-alkanes from bimetallic Pt–Zn nanoparticles supported on a uniform aluminosilicate. Chemical Communications, 2019, 55, 3355-3358.	4.1	21
24	Mechanistic Investigation on Catalytic Deoxygenation of Phenol as a Model Compound of Biocrude Under Methane. ACS Sustainable Chemistry and Engineering, 2019, 7, 1512-1523.	6.7	13
25	Co-aromatization of methane with olefins: The role of inner pore and external surface catalytic sites. Applied Catalysis B: Environmental, 2018, 234, 234-246.	20.2	30
26	Zn(II) Complex Catalyzed Coupling Aquathermolysis of Water-Heavy Oil-Methanol at Low Temperature. Petroleum Chemistry, 2018, 58, 197-202.	1.4	12
27	Catalytic valorization of biomass derived glycerol under methane: Effect of catalyst synthesis method. Fuel, 2018, 216, 218-226.	6.4	16
28	Direct catalytic co-conversion of cellulose and methane to renewable petrochemicals. Catalysis Science and Technology, 2018, 8, 5632-5645.	4.1	16
29	Catalytic aromatization of acetone as a model compound for biomass-derived oil under a methane environment. Catalysis Science and Technology, 2018, 8, 5104-5114.	4.1	15
30	Catalytic co-aromatization of methane and heptane as an alkane model compound over Zn-Ga/ZSM-5: A mechanistic study. Applied Catalysis B: Environmental, 2018, 236, 13-24.	20.2	46
31	Maximizing the production of aromatic hydrocarbons from lignin conversion by coupling methane activation. Bioresource Technology, 2018, 268, 505-513.	9.6	33
32	Catalytic Valorization of Furfural under Methane Environment. ACS Sustainable Chemistry and Engineering, 2018, 6, 8891-8903.	6.7	19
33	Selective Participation of Methane in Olefin Upgrading over Pd/ZSMâ€5 and Ir/ZSMâ€5: Investigation using Deuterium Enriched Methane. ChemistrySelect, 2017, 2, 252-256.	1.5	4
34	Methane Upgrading of Acetic Acid as a Model Compound for a Biomass-Derived Liquid over a Modified Zeolite Catalyst. ACS Catalysis, 2017, 7, 3681-3692.	11.2	40
35	Co-aromatization of olefin and methane over Ag-Ga/ZSM-5 catalyst at low temperature. Applied Catalysis B: Environmental, 2017, 211, 275-288.	20.2	61
36	Catalytic aquathermolysis of heavy oil by coordination complex at relatively low temperature. Petroleum Chemistry, 2017, 57, 881-884.	1.4	16

#	Article	IF	CITATIONS
37	Olefin Upgrading over Ir/ZSM-5 catalysts under methane environment. Applied Catalysis B: Environmental, 2017, 201, 278-289.	20.2	27
38	Bitumen partial upgrading over Mo/ZSM-5 under methane environment: Methane participation investigation. Applied Catalysis B: Environmental, 2017, 201, 438-450.	20.2	24
39	Catalytic bitumen partial upgrading over Ag-Ga/ZSM-5 under methane environment. Fuel Processing Technology, 2017, 156, 290-297.	7.2	16
40	Refinery oil upgrading under methane environment over PdOx/H-ZSM-5: Highly selective olefin cyclization. Fuel, 2016, 183, 396-404.	6.4	36
41	Highly selective olefin hydrogenation: Refinery oil upgrading over bifunctional PdOx/H-ZSM-5 catalyst. Catalysis Communications, 2016, 87, 66-69.	3.3	9
42	Catalytic co-aromatization of ethanol and methane. Applied Catalysis B: Environmental, 2016, 198, 480-492.	20.2	42
43	Olefin upgrading under methane environment over Ag-Ga/ZSM-5 catalyst. Fuel, 2016, 182, 577-587.	6.4	19
44	Palladium-tin catalysts for the direct synthesis of H ₂ O ₂ with high selectivity. Science, 2016, 351, 965-968.	12.6	465
45	Converting solid wastes into liquid fuel using a novel methanolysis process. Waste Management, 2016, 49, 304-310.	7.4	15
46	Low-temperature and low-pressure non-oxidative activation of methane for upgrading heavy oil. Catalysis Science and Technology, 2016, 6, 1201-1213.	4.1	23
47	Performance of Zn/ZSM-5 for In Situ Catalytic Upgrading of Pyrolysis Bio-oil by Methane. Topics in Catalysis, 2016, 59, 86-93.	2.8	48
48	Catalysts for the selective catalytic reduction of NO _x with NH ₃ at low temperature. Catalysis Science and Technology, 2015, 5, 4280-4288.	4.1	181
49	Separation of Toluene-Insoluble Solids in the Slurry Oil from a Residual Fluidized Catalytic Cracking Unit: Determination of the Solid Content and Sequential Selective Separation of Solid Components. Energy & Energy & Solid Components. Energy & Solid Components.	5.1	16
50	Catalytic Conversion of Biomass by Natural Gas for Oil Quality Upgrading. Industrial & Camp; Engineering Chemistry Research, 2014, 53, 15862-15870.	3.7	34
51	Co-processing of vacuum residue/fraction oil blends: Effect of fraction oils recycle on the stability of coking feedstock. Journal of Analytical and Applied Pyrolysis, 2014, 109, 109-115.	5.5	2