

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1288290/publications.pdf Version: 2024-02-01

<u>710011</u>

#	Article	IF	CITATIONS
1	Effect of low-temperature interlayer in active-region upon photoluminescence in multiple-quantum-well InGaN/GaN. Journal of Luminescence, 2022, 244, 118741.	3.1	3
2	Effect of InGaN well layer growth rate upon photoluminescence of InGaN/GaN multiple-quantum-well structures. , 2022, , 207211.		1
3	Influence of in volatilization on photoluminescence in InGaN/GaN multiple quantum wells. Materials Express, 2021, 11, 2033-2038.	0.5	0
4	Wave-shaped temperature dependence characteristics of the electroluminescence peak energy in a green InGaN-based LED grown on silicon substrate. Scientific Reports, 2020, 10, 129.	3.3	7
5	Photoluminescence properties of InGaN/GaN multiple quantum wells containing a gradually changing amount of indium in each InGaN well layer along the growth direction. Journal of Luminescence, 2020, 223, 117225.	3.1	7
6	Effect of InGaN growth interruption on photoluminescence properties of an InGaN-based multiple quantum well structure. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 119, 113982.	2.7	3
7	Enhanced localisation effect and reduced quantum-confined Stark effect of carriers in InGaN/GaN multiple quantum wells embedded in nanopillars. Journal of Luminescence, 2018, 203, 216-221.	3.1	13
8	Light Control of Ferromagnetism in ZnO Films on Pt Substrate at Room Temperature. Scientific Reports, 2017, 7, 45642.	3.3	12
9	Diameter-dependent photoluminescence properties of strong phase-separated dual-wavelength InGaN/GaN nanopillar LEDs. Applied Surface Science, 2017, 410, 196-200.	6.1	15
10	Fabrication of p-ZnO:Na/n-ZnO:Na homojunction by surface pulsed laser irradiation. RSC Advances, 2017, 7, 37296-37301.	3.6	9
11	Electroluminescence properties of InGaN/GaN multiple quantum well-based LEDs with different indium contents and different well widths. Scientific Reports, 2017, 7, 15301.	3.3	27
12	"W-shaped―injection current dependence of electroluminescence linewidth in green InGaN/GaN-based LED grown on silicon substrate. Optics Express, 2017, 25, A871.	3.4	29
13	Combined effect of the indium content and well width on electroluminescence in InGaN/GaN multiple quantum well-based LEDs. Materials Express, 2017, 7, 523-528.	0.5	3
14	Influence of the InGaN/GaN quasi-superlattice underlying layer on photoluminescence in InGaN/GaN multiple quantum wells. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 76, 1-5.	2.7	29
15	Effect of deposition temperature on transparent conductive properties of Î ³ -Cul film prepared by vacuum thermal evaporation. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 1466-1470.	1.8	68
16	Structural properties of Alq3 nanocrystals prepared by physical vapor deposition and facile solution method. International Journal of Modern Physics B, 2015, 29, 1542042.	2.0	5
17	Influence of injection current and temperature on electroluminescence in InGaN/GaN multiple quantum wells. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 59, 56-59.	2.7	13
18	Transfer and recombination mechanism of carriers in phase-separated InGaN quantum wells. Journal of Applied Physics, 2013, 114, .	2.5	23

Zıwu Jı

#	Article	IF	CITATIONS
19	Green and blue emissions in phase-separated InGaN quantum wells. Journal of Applied Physics, 2013, 114, 163525.	2.5	23
20	Influence of excitation power and temperature on photoluminescence in InGaN/GaN multiple quantum wells. Optics Express, 2012, 20, 3932.	3.4	142
21	Fabrication of Non-Stoichiometric Titanium Dioxide by Spark Plasma Sintering and Its Thermoelectric Properties. Materials Transactions, 2012, 53, 1208-1211.	1.2	18
22	Effects of substrate temperature upon optical properties of ZnTe epilayers grown on (100) GaAs substrates by MOVPE. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 2041-2044.	1.8	1
23	A weak electron transporting material with high triplet energy and thermal stability via a super twisted structure for high efficient blue electrophosphorescent devices. Journal of Materials Chemistry, 2011, 21, 19058.	6.7	12