
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1288057/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intravenous thrombolysis in ischemic stroke patients with a prior intracranial hemorrhage: a meta-analysis. Therapeutic Advances in Neurological Disorders, 2022, 15, 175628642210741.	1.5	2
2	Risk of Subsequent Stroke Among Patients Receiving Outpatient vs Inpatient Care for Transient Ischemic Attack. JAMA Network Open, 2022, 5, e2136644.	2.8	8
3	Comparison of Long-Term Outcomes and Associated Factors between Younger and Older Rural Ischemic Stroke Patients. Journal of Clinical Medicine, 2022, 11, 1430.	1.0	3
4	Social Determinants of Stroke Hospitalization and Mortality in United States' Counties. Journal of Clinical Medicine, 2022, 11, 4101.	1.0	7
5	A 5-Decade Analysis of Incidence Trends of Ischemic Stroke After Transient Ischemic Attack. JAMA Neurology, 2021, 78, 77.	4.5	36
6	Trends in ischemic stroke outcomes in a rural population in the United States. Journal of the Neurological Sciences, 2021, 422, 117339.	0.3	19
7	Racial, Economic, and Health Inequality and COVID-19 Infection in the United States. Journal of Racial and Ethnic Health Disparities, 2021, 8, 732-742.	1.8	471
8	COVIDâ€19: Neuroimaging Features of a Pandemic. Journal of Neuroimaging, 2021, 31, 228-243.	1.0	46
9	Obesity and mortality after the first ischemic stroke: Is obesity paradox real?. PLoS ONE, 2021, 16, e0246877.	1.1	26
10	Abstract P636: Social Determinants of Stroke Hospitalization and Mortality in the United States. Stroke, 2021, 52, .	1.0	0
11	Abstract P699: Trends in Ischemic Stroke Risk Factors and Outcomes in a Rural Population in the United States. Stroke, 2021, 52, .	1.0	1
12	Abstract P88: Risk of Stroke in Hospitalized SARS-Cov-2 Infected Patients a Multinational Population-Based Study. Stroke, 2021, 52, .	1.0	4
13	Abstract P81: SARS-CoV-2 and Stroke Characteristics a Report From the Multinational COVID-19 Stroke Study Group. Stroke, 2021, 52, .	1.0	7
14	Abstract P670: Obesity and Mortality After the First Ischemic Stroke: Is Obesity Paradox Real?. Stroke, 2021, 52, .	1.0	1
15	Abstract P635: Polygenic Risk Scores Augment Stroke Subtyping and Outcome Evaluation. Stroke, 2021, 52, .	1.0	Ο
16	Polygenic Risk Scores Augment Stroke Subtyping. Neurology: Genetics, 2021, 7, e560.	0.9	17
17	Stroke in SARS-CoV-2 Infection: A Pictorial Overview of the Pathoetiology. Frontiers in Cardiovascular Medicine, 2021, 8, 649922.	1.1	15
18	Abstract P693: Sex Disparity in Long-Term Stroke Recurrence and Mortality in a Rural Population in the United States. Stroke, 2021, 52, .	1.0	0

#	Article	IF	CITATIONS
19	Machine Learning-Enabled 30-Day Readmission Model for Stroke Patients. Frontiers in Neurology, 2021, 12, 638267.	1.1	16
20	Variants at the MHC Region Associate With Susceptibility to Clostridioides difficile Infection: A Genome-Wide Association Study Using Comprehensive Electronic Health Records. Frontiers in Immunology, 2021, 12, 638913.	2.2	4
21	Prediction of Long-Term Stroke Recurrence Using Machine Learning Models. Journal of Clinical Medicine, 2021, 10, 1286.	1.0	28
22	Abstract P158: Outcomes of Patients With a Transient Ischemic Attack Based on Inpatient Versus Urgent Outpatient Evaluations a Systematic Review and Meta-Analysis. Stroke, 2021, 52, .	1.0	0
23	SARS-CoV-2 Is a Culprit for Some, but Not All Acute Ischemic Strokes: A Report from the Multinational COVID-19 Stroke Study Group. Journal of Clinical Medicine, 2021, 10, 931.	1.0	16
24	Abstract P308: Machine Learning Based Models of the 30-Day Readmission for Stroke Patients Using Electronic Health Record Data. Stroke, 2021, 52, .	1.0	0
25	Abstract P261: Machine Learning-Enabled Prediction of Long-Term Stroke Recurrence Using Data From Electronic Health Records. Stroke, 2021, 52, .	1.0	0
26	Adherence to anticoagulant guideline for atrial fibrillation: A large care gap among stroke patients in a rural population. Journal of the Neurological Sciences, 2021, 424, 117410.	0.3	5
27	Genetic basis of lacunar stroke: a pooled analysis of individual patient data and genome-wide association studies. Lancet Neurology, The, 2021, 20, 351-361.	4.9	95
28	SARS-CoV-2 and Stroke Characteristics. Stroke, 2021, 52, e117-e130.	1.0	51
29	Predicting short and long-term mortality after acute ischemic stroke using EHR. Journal of the Neurological Sciences, 2021, 427, 117560.	0.3	18
30	Outcomes of Mechanical Thrombectomy in the Early (<6-hour) and Extended (≥6-hour) Time Window Based Solely on Noncontrast CT and CT Angiography: A Propensity Score–Matched Cohort Study. American Journal of Neuroradiology, 2021, 42, 1979-1985.	1.2	15
31	At the Intersection of Gut Microbiome and Stroke: A Systematic Review of the Literature. Frontiers in Neurology, 2021, 12, 729399.	1.1	13
32	"Lessons Learned―Preventing Recurrent Ischemic Strokes through Secondary Prevention Programs: A Systematic Review. Journal of Clinical Medicine, 2021, 10, 4209.	1.0	7
33	Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurology, The, 2021, 20, 795-820.	4.9	2,308
34	Early Detection of Septic Shock Onset Using Interpretable Machine Learners. Journal of Clinical Medicine, 2021, 10, 301.	1.0	14
35	Increasing the Density of Laboratory Measures for Machine Learning Applications. Journal of Clinical Medicine, 2021, 10, 103.	1.0	8
36	Lack of Sex Disparity in Oral Anticoagulation in Atrial Fibrillation Patients Presenting with Ischemic Stroke in a Rural Population. Journal of Clinical Medicine, 2021, 10, 4670.	1.0	1

#	Article	IF	CITATIONS
37	Imputation of missing values for electronic health record laboratory data. Npj Digital Medicine, 2021, 4, 147.	5.7	32
38	Sex-specific association of RAGE and HMGB1 genotype variations with susceptibility to ischemic stroke in Caucasians. Journal of Clinical Neuroscience, 2021, 94, 328-331.	0.8	1
39	Artificial Intelligence: A Shifting Paradigm in Cardio-Cerebrovascular Medicine. Journal of Clinical Medicine, 2021, 10, 5710.	1.0	4
40	Identification of new regulatory genes through expression pattern analysis of a global RNA-seq dataset from a Helicobacter pyloriÂco-culture system. Scientific Reports, 2020, 10, 11506.	1.6	9
41	Cysteine-Altering <i>NOTCH3</i> Variants Are a Risk Factor for Stroke in the Elderly Population. Stroke, 2020, 51, 3562-3569.	1.0	24
42	Effects of White Matter Hyperintensities on 90-Day Functional Outcome after Large Vessel and Non-Large Vessel Stroke. Cerebrovascular Diseases, 2020, 49, 419-426.	0.8	7
43	CADASIL vs. Multiple Sclerosis: Is It Misdiagnosis or Concomitant? A Case Series. Frontiers in Neurology, 2020, 11, 860.	1.1	12
44	Using artificial intelligence for improving stroke diagnosis in emergency departments: a practical framework. Therapeutic Advances in Neurological Disorders, 2020, 13, 175628642093896.	1.5	22
45	Risk of stroke in hospitalized SARS-CoV-2 infected patients: A multinational study. EBioMedicine, 2020, 59, 102939.	2.7	82
46	Replication of Top Loci From COL4A1/2 Associated With White Matter Hyperintensity Burden in Patients With Ischemic Stroke. Stroke, 2020, 51, 3751-3755.	1.0	5
47	A predictive analytics model for differentiating between transient ischemic attacks (TIA) and its mimics. BMC Medical Informatics and Decision Making, 2020, 20, 112.	1.5	10
48	The Reply. American Journal of Medicine, 2020, 133, e69.	0.6	0
49	The Reply. American Journal of Medicine, 2020, 133, e67.	0.6	0
50	Malnutrition, Health and the Role of Machine Learning in Clinical Setting. Frontiers in Nutrition, 2020, 7, 44.	1.6	18
51	Sex disparity in long-term stroke recurrence and mortality in a rural population in the United States. Therapeutic Advances in Neurological Disorders, 2020, 13, 175628642097189.	1.5	14
52	Abstract 28: Genetic Variants From Lysine-Specific Demethylase 4C (KDM4C) Associated With White Matter Hyperintensity Burden in Ischemic Stroke Patients. Stroke, 2020, 51, .	1.0	0
53	Abstract TP216: Identifying Common Genetic Variants Associated With Fatal Stroke in Incident Ischemic Stroke Patients. Stroke, 2020, 51, .	1.0	0
54	Clinical Risk Score for Predicting Recurrence Following a Cerebral Ischemic Event. Frontiers in Neurology, 2019, 10, 1106.	1.1	39

#	Article	IF	CITATIONS
55	Dissecting genetic factors affecting phenylephrine infusion rates during anesthesia: a genome-wide association study employing EHR data. BMC Medicine, 2019, 17, 168.	2.3	14
56	Artificial Intelligence Transforms the Future of Health Care. American Journal of Medicine, 2019, 132, 795-801.	0.6	255
57	Rate and associated factors of transient ischemic attack misdiagnosis. ENeurologicalSci, 2019, 15, 100193.	0.5	18
58	High-resolution computational modeling of immune responses in the gut. GigaScience, 2019, 8, .	3.3	13
59	Six-Month Outcome of Transient Ischemic Attack and Its Mimics. Frontiers in Neurology, 2019, 10, 294.	1.1	11
60	Deep Ensemble Network for Quantification and Severity Assessment of Knee Osteoarthritis. , 2019, , .		4
61	Multi-Resolution Sensitivity Analysis of Model of Immune Response to Helicobacter pylori Infection via Spatio-Temporal Metamodeling. Frontiers in Applied Mathematics and Statistics, 2019, 5, .	0.7	6
62	The Reply. American Journal of Medicine, 2019, 132, e751.	0.6	0
63	Fast-Track Long Term Continuous Heart Monitoring in a Stroke Clinic: A Feasibility Study. Frontiers in Neurology, 2019, 10, 1400.	1.1	3
64	Challenges in Personalized Nutrition and Health. Frontiers in Nutrition, 2018, 5, 117.	1.6	64
65	Classification of short single-lead electrocardiograms (ECGs) for atrial fibrillation detection using piecewise linear spline and XGBoost. Physiological Measurement, 2018, 39, 104006.	1.2	37
66	Genetic susceptibility to cerebrovascular disease: A systematic review. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 1853-1871.	2.4	14
67	NLRX1 Modulates Immunometabolic Mechanisms Controlling the Host–Gut Microbiota Interactions during Inflammatory Bowel Disease. Frontiers in Immunology, 2018, 9, 363.	2.2	42
68	Development of Synthetic Patient Populations and In Silico Clinical Trials. , 2018, , 57-77.		5
69	From Nutritional Immunology to Drug Development. , 2018, , 41-56.		0
70	Abstract WMP51: Towards a Simplified Method for Ischemic Stroke Subtyping Suitable for Electronic Medical Record Systems. Stroke, 2018, 49, .	1.0	0
71	Novel Screening Tool for Stroke Using Artificial Neural Network. Stroke, 2017, 48, 1678-1681.	1.0	85
72	Modeling new immunoregulatory therapeutics as antimicrobial alternatives for treating Clostridium difficile infection. Artificial Intelligence in Medicine, 2017, 78, 1-13.	3.8	28

VIDA ABEDI

#	Article	IF	CITATIONS
73	Modeling the Mechanisms by Which HIV-Associated Immunosuppression Influences HPV Persistence at the Oral Mucosa. PLoS ONE, 2017, 12, e0168133.	1.1	29
74	Agent-Based Modeling and High Performance Computing. , 2016, , 79-111.		6
75	Modeling-Enabled Systems Nutritional Immunology. Frontiers in Nutrition, 2016, 3, 5.	1.6	21
76	From Big Data Analytics and Network Inference to Systems Modeling. , 2016, , 113-144.		0
77	Computational Modeling. , 2016, , 9-29.		Ο
78	Immunoinformatics Cyberinfrastructure for Modeling and Analytics. , 2016, , 45-61.		0
79	Ordinary Differential Equations (ODEs) Based Modeling. , 2016, , 63-78.		14
80	Multiscale Modeling. , 2016, , 145-173.		2
81	Modeling Exercises. , 2016, , 175-200.		Ο
82	FABS. Stroke, 2016, 47, 2216-2220.	1.0	43
82 83	FABS. Stroke, 2016, 47, 2216-2220. Systems-wide analyses of mucosal immune responses to <i>Helicobacter pylori</i> at the interface between pathogenicity and symbiosis. Gut Microbes, 2016, 7, 3-21.	1.0 4.3	43 34
	Systems-wide analyses of mucosal immune responses to <i>Helicobacter pylori</i> at the interface		
83	Systems-wide analyses of mucosal immune responses to <i>Helicobacter pylori</i> at the interface between pathogenicity and symbiosis. Gut Microbes, 2016, 7, 3-21. Bistability analyses of CD4+ T follicular helper and regulatory cells during Helicobacter pylori	4.3	34
83 84	Systems-wide analyses of mucosal immune responses to <i>Helicobacter pylori</i> at the interface between pathogenicity and symbiosis. Gut Microbes, 2016, 7, 3-21. Bistability analyses of CD4+ T follicular helper and regulatory cells during Helicobacter pylori infection. Journal of Theoretical Biology, 2016, 398, 74-84. Modeling the Role of Lanthionine Synthetase C-Like 2 (LANCL2) in the Modulation of Immune Responses	4.3 0.8	34 25
83 84 85	Systems-wide analyses of mucosal immune responses to <i>Helicobacter pylori</i> i>at the interface between pathogenicity and symbiosis. Gut Microbes, 2016, 7, 3-21. Bistability analyses of CD4+ T follicular helper and regulatory cells during Helicobacter pylori infection. Journal of Theoretical Biology, 2016, 398, 74-84. Modeling the Role of Lanthionine Synthetase C-Like 2 (LANCL2) in the Modulation of Immune Responses to Helicobacter pylori Infection. PLoS ONE, 2016, 11, e0167440.	4.3 0.8 1.1	34 25 15
83 84 85 86	Systems-wide analyses of mucosal immune responses to <i>Helicobacter pylori </i> at the interface between pathogenicity and symbiosis. Gut Microbes, 2016, 7, 3-21. Bistability analyses of CD4+ T follicular helper and regulatory cells during Helicobacter pylori infection. Journal of Theoretical Biology, 2016, 398, 74-84. Modeling the Role of Lanthionine Synthetase C-Like 2 (LANCL2) in the Modulation of Immune Responses to Helicobacter pylori Infection. PLoS ONE, 2016, 11, e0167440. Multiscale modeling of mucosal immune responses. BMC Bioinformatics, 2015, 16, S2. Internet-Based Information-Seeking Behavior for Transient Ischemic Attack. International Journal of	4.3 0.8 1.1 1.2	34 25 15 29
83 84 85 86 87	Systems-wide analyses of mucosal immune responses to <i>Helicobacter pylori</i> i>at the interface between pathogenicity and symbiosis. Gut Microbes, 2016, 7, 3-21. Bistability analyses of CD4+ T follicular helper and regulatory cells during Helicobacter pylori infection. Journal of Theoretical Biology, 2016, 398, 74-84. Modeling the Role of Lanthionine Synthetase C-Like 2 (LANCL2) in the Modulation of Immune Responses to Helicobacter pylori Infection. PLoS ONE, 2016, 11, e0167440. Multiscale modeling of mucosal immune responses. BMC Bioinformatics, 2015, 16, S2. Internet-Based Information-Seeking Behavior for Transient Ischemic Attack. International Journal of Stroke, 2015, 10, 1212-1216. Sensitivity Analysis of an ENteric Immunity Simulator (ENISI)-Based Model of Immune Responses to	4.3 0.8 1.1 1.2 2.9	 34 25 15 29 14

#	Article	IF	CITATIONS
91	Supervised Learning with the Artificial Neural Networks Algorithm for Modeling Immune Cell Differentiation. , 2015, , 1-18.		2
92	Literature Mining and Ontology Mapping Applied to Big Data. , 2015, , 184-208.		2
93	ENISI multiscale modeling of mucosal immune responses driven by high performance computing. , 2015, , .		5
94	Supervised learning methods in modeling of CD4+ T cell heterogeneity. BioData Mining, 2015, 8, 27.	2.2	15
95	Systems Modeling of Interactions between Mucosal Immunity and the Gut Microbiome during Clostridium difficile Infection. PLoS ONE, 2015, 10, e0134849.	1.1	25
96	Abstract T P273: Internet-Based Information Seeking Behavior for Transient Ischemic Attack. Stroke, 2015, 46, .	1.0	0
97	Empirical study using network of semantically related associations in bridging the knowledge gap. Journal of Translational Medicine, 2014, 12, 324.	1.8	7
98	Poster: Context-sensitive use of bioinformatics tools with complementary functionalities for hypothesis generation. , 2014, , .		0
99	Obnet: Network of semantic associations for obesity. BMC Bioinformatics, 2014, 15, .	1.2	Ο
100	Context-sensitive use of bioinformatics tools with complementary functionalities for generation of relevant hypothesis. BMC Bioinformatics, 2014, 15, .	1.2	0
101	An automated framework for hypotheses generation using literature. BioData Mining, 2012, 5, 13.	2.2	10
102	Quantitative Epistasis Analysis and Pathway Inference from Genetic Interaction Data. PLoS Computational Biology, 2011, 7, e1002048.	1.5	15
103	Estimating the Stochastic Bifurcation Structure of Cellular Networks. PLoS Computational Biology, 2010, 6, e1000699.	1.5	32
104	Risk of Cerebrovascular Events in Hospitalized Patients with SARS-CoV-2 Infection. SSRN Electronic Journal, O, , .	0.4	1
105	An Integrated Pipeline for Prediction of <i>Clostridioides Difficile</i> Infection. SSRN Electronic Journal, 0, , .	0.4	Ο