Pedro A Orellana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1287338/publications.pdf

Version: 2024-02-01

77 papers

1,819 citations

304743

22

h-index

276875 41 g-index

77 all docs

77 docs citations

times ranked

77

1047 citing authors

#	Article	IF	CITATIONS
1	Ghost Fano resonance in a double quantum dot molecule attached to leads. Physical Review B, 2003, 67, .	3.2	289
2	Electronic transport through a parallel-coupled triple quantum dot molecule: Fano resonances and bound states in the continuum. Physical Review B, 2006, 73, .	3.2	152
3	Transport through a quantum wire with a side quantum-dot array. Physical Review B, 2003, 67, .	3.2	130
4	Controlling Fano and Dicke effects via a magnetic flux in a two-site Anderson model. Physical Review B, 2004, 70, .	3.2	88
5	Conductance and persistent current of a quantum ring coupled to a quantum wire under external fields. Physical Review B, 2003, 68, .	3.2	54
6	Transport properties of antidot superlattices of graphene nanoribbons. Physical Review B, 2009, 80, .	3.2	54
7	Enhancement of thermoelectric efficiency and violation of the Wiedemann-Franz law due to Fano effect. Journal of Applied Physics, 2012, 111, .	2.5	54
8	Transport properties of graphene nanoribbons with side-attached organic molecules. Nanotechnology, 2008, 19, 065402.	2.6	48
9	Photon-assisted transport in a carbon nanotube calculated using Green's function techniques. Physical Review B, 2007, 75, .	3.2	46
10	Bound states in the continuum in graphene quantum dot structures. Europhysics Letters, 2010, 91, 66001.	2.0	46
11	Enhancing thermoelectric properties of graphene quantum rings. Physical Review B, 2015, 91, .	3.2	40
12	Transport properties of graphene quantum dots. Physical Review B, 2011, 83, .	3.2	37
13	Tunable single-photon quantum router. Physical Review A, 2019, 99, .	2.5	37
14	An array of quantum dots as a spin filter device by using Dicke and Fano effects. Nanotechnology, 2009, 20, 434013.	2.6	36
15	Tunable Spin-Polarized Edge Currents in Proximitized Transition Metal Dichalcogenides. Physical Review Letters, 2019, 122, 086401.	7.8	36
16	Persistent current magnification in a double quantum-ring system. Physical Review B, 2005, 71, .	3.2	34
17	Kondo and Dicke effect in quantum dots side coupled to a quantum wire. Physical Review B, 2006, 74, .	3.2	32
18	Suppression of Kondo screening by the Dicke effect in multiple quantum dots. Physical Review B, 2010, 82, .	3.2	31

#	Article	IF	Citations
19	Kondo effect and bistability in a double quantum dot. Physical Review B, 2002, 65, .	3.2	30
20	Thermoelectric transport through Majorana bound states and violation of Wiedemann-Franz law. Physical Review B, 2016, 94, .	3.2	27
21	Strong spin-dependent negative differential resistance in composite graphene superlattices. Physical Review B, 2013, 88, .	3.2	25
22	Bound states in the continuum driven by AC fields. Europhysics Letters, 2013, 102, 17012.	2.0	22
23	Silicene-based spin-filter device: impact of random vacancies. 2D Materials, 2016, 3, 025006.	4.4	22
24	Capacitively coupled double quantum dot system in the Kondo regime. Physical Review B, 2011, 84, .	3.2	20
25	Graphene nanoring as a tunable source of polarized electrons. Nanotechnology, 2012, 23, 205202.	2.6	20
26	Optimization of a relativistic quantum mechanical engine. Physical Review E, 2016, 94, 022109.	2.1	18
27	Stacking change in MoS2 bilayers induced by interstitial Mo impurities. Scientific Reports, 2018, 8, 2143.	3.3	18
28	Quasistatic and quantum-adiabatic Otto engine for a two-dimensional material: The case of a graphene quantum dot. Physical Review E, 2020, 101, 012116.	2.1	18
29	Fano–Rashba effect in quantum dots. Nanotechnology, 2008, 19, 195401.	2.6	17
30	Conductance gaps in graphene ribbons designed by molecular aggregations. Nanotechnology, 2009, 20, 095705.	2.6	17
31	Spin-Seebeck effect and spin polarization in a multiple quantum dot molecule. Physical Review B, 2017, 96, .	3.2	17
32	Magnetic Otto Engine for an Electron in a Quantum Dot: Classical and Quantum Approach. Entropy, 2019, 21, 512.	2.2	16
33	Quantum electron splitter based on two quantum dots attached to leads. Physical Review B, 2006, 74, .	3.2	15
34	Trapping and motion of polarons in weakly disordered DNA molecules. Journal of Physics Condensed Matter, 2009, 21, 285105.	1.8	15
35	Bound states in the continuum and spin filter in quantum-dot molecules. Physica B: Condensed Matter, 2014, 455, 66-70.	2.7	15
36	Optoelectronic Properties of Van Der Waals Hybrid Structures: Fullerenes on Graphene Nanoribbons. Nanomaterials, 2017, 7, 69.	4.1	15

#	Article	IF	CITATIONS
37	Spin-polarized electrons in bilayer graphene ribbons. Journal of Applied Physics, 2013, 113, .	2.5	14
38	Aromatic molecules as spintronic devices. Journal of Chemical Physics, 2014, 140, 104308.	3.0	13
39	Spin-polarized electric current in silicene nanoribbons induced by atomic adsorption. Physical Review B, 2017, 96, .	3.2	12
40	Magnetic Engine for the Single-Particle Landau Problem. Entropy, 2017, 19, 639.	2.2	12
41	Kondo effect in side coupled double quantum-dot molecule. Solid State Communications, 2005, 136, 323-327.	1.9	11
42	Negative differential conductance induced by electronic correlation in a double quantum dot molecule. Physical Review B, 2008, 78, .	3.2	11
43	Bound states in the continuum: Localization of Dirac-like fermions. Europhysics Letters, 2014, 108, 46008.	2.0	11
44	Fanoâ€"Andreev effect in a T-shape double quantum dot in the Kondo regime. Journal of Physics Condensed Matter, 2017, 29, 135301.	1.8	11
45	Fanoâ∈Majorana Effect and Bound States in the Continuum on a Crossbarâ∈Shaped Quantum Dot Hybrid Structure. Annalen Der Physik, 2019, 531, 1800498.	2.4	11
46	Detecting coupling of Majorana bound states with an Aharonov–Bohm interferometer. Journal of Physics Condensed Matter, 2018, 30, 045301.	1.8	10
47	Electronic transport of folded graphene nanoribbons. Solid State Communications, 2012, 152, 1400-1403.	1.9	9
48	Photon-assisted transport in bilayer graphene flakes. Physical Review B, 2017, 95, .	3.2	9
49	Fano and Dicke effects in a double Rashba-ring system. Nanotechnology, 2008, 19, 355202.	2.6	8
50	Graphene nanoribbon thermopower as a tool for molecular spectroscopy. Journal of Applied Physics, 2013, 114, .	2.5	8
51	Bound states in the continuum in whispering gallery resonators. Physical Review A, 2018, 98, .	2.5	8
52	Majorana bound state in the continuum: Coupling between a Majorana bound state and a quantum dot mediated by a continuum energy spectrum. Physical Review B, 2020, 101, .	3.2	8
53	Fanoâ€Andreev and Fanoâ€Majorana Correspondence in Quantum Dot Hybrid Structures. Annalen Der Physik, 2020, 532, 1900409.	2.4	7
54	Tristability in a non-equilibrium double-quantum-dot in the Kondo regime. Solid State Communications, 2003, 125, 165-169.	1.9	6

#	Article	IF	CITATIONS
55	Bound states in the continuum poisoned by Majorana fermions. Journal of Physics Condensed Matter, 2018, 30, 375301.	1.8	6
56	Enhancement of the thermoelectric efficiency in a T-shaped quantum dot system in the linear and nonlinear regimes. Journal of Applied Physics, 2018, 123, .	2.5	5
57	Enhancement of thermoelectric efficiency by quantum interference effects in trilayer silicene flakes. Journal of Physics Condensed Matter, 2017, 29, 015004.	1.8	4
58	Tuning the thermoelectric response of silicene nanoribbons with vacancies. Journal of Physics Condensed Matter, 2020, 32, 275301.	1.8	4
59	Design of an efficient spin filter device. Semiconductor Science and Technology, 2006, 21, 1764-1767.	2.0	3
60	DNA Molecule as a Spintronic Device. Journal of Superconductivity and Novel Magnetism, 2013, 26, 2227-2230.	1.8	3
61	Dicke and Fano-Andreev reflections in a triple quantum-dot system. Scientific Reports, 2021, 11, 3941.	3.3	3
62	Kondo effect in a double quantum-dot molecule under the effect of an electric and magnetic field. Solid State Communications, 2003, 126, 551-555.	1.9	2
63	Quantum transport of electrons through a parallel-coupled triple quantum-dot molecule. Brazilian Journal of Physics, 2006, 36, 913-916.	1.4	2
64	Conductance and Thermopower of a Quantum Dot with Fanoâ€"Rashba Effect. Journal of Superconductivity and Novel Magnetism, 2013, 26, 2209-2212.	1.8	2
65	Single-parameter spin-pumping in driven metallic rings with spin-orbit coupling. Journal of Applied Physics, 2014, 115, 124507.	2.5	2
66	Electron localization due to side-attached molecules on graphene nanoribbons. Journal of Applied Physics, 2016, 120, 164310.	2.5	2
67	Fano-Rashba effect and enhancement of figure of merit and violation of Wiedemann-Franz law. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 114, 113618.	2.7	2
68	Influence of Majorana Bound States in Quantum Rings. Annalen Der Physik, 2020, 532, 2000199.	2.4	2
69	Manipulation of Majorana bound states in proximity to a quantum ring with Rashba coupling. Scientific Reports, 2022, 12, 1071.	3.3	2
70	Kondo and Fano effect in side attached double quantum-dot molecule. Brazilian Journal of Physics, 2006, 36, 820-823.	1.4	1
71	Majorana Bound States Hallmarks in a Quantum Topological Interferometer Ring. Annalen Der Physik, 2021, 533, 2100040.	2.4	1
72	Josephson and Persistent Currents in a Quantum Ring between Topological Superconductors. Annalen Der Physik, 2021, 533, 2100305.	2.4	1

#	Article	IF	CITATIONS
73	Manipulating photonic signals by a multipurpose quantum junction. Physical Review A, 2022, 105, .	2.5	1
74	Transport signatures of few-atom carbon rings. Physical Chemistry Chemical Physics, 0, , .	2.8	1
75	Kondo effect and tristability in a double-quantum dot. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 17, 152-153.	2.7	O
76	Fano–Kondo and the Kondo box regimes crossover in a quantum dot coupled to a quantum box. Journal of Physics Condensed Matter, 2013, 25, 505601.	1.8	0
77	A microscopic approach to heating rate of ferrofluid droplets by a magnetic field. Journal of Applied Physics, 2019, 125, 045104.	2.5	0