VerÃ³nica Ferreira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1287264/publications.pdf

Version: 2024-02-01

88 papers

4,482 citations

126708 33 h-index 64 g-index

89 all docs 89 docs citations

89 times ranked 3524 citing authors

#	Article	IF	CITATIONS
1	Continental-Scale Effects of Nutrient Pollution on Stream Ecosystem Functioning. Science, 2012, 336, 1438-1440.	6.0	520
2	A global experiment suggests climate warming will not accelerate litter decomposition in streams but might reduce carbon sequestration. Ecology Letters, 2011, 14, 289-294.	3.0	256
3	Synergistic effects of water temperature and dissolved nutrients on litter decomposition and associated fungi. Global Change Biology, 2011, 17, 551-564.	4.2	208
4	A metaâ€analysis of the effects of nutrient enrichment on litter decomposition in streams. Biological Reviews, 2015, 90, 669-688.	4.7	208
5	Whole-stream nitrate addition affects litter decomposition and associated fungi but not invertebrates. Oecologia, 2006, 149, 718-729.	0.9	197
6	Stimulation of leaf litter decomposition and associated fungi and invertebrates by moderate eutrophication: implications for stream assessment. Freshwater Biology, 2006, 51, 1655-1669.	1.2	194
7	Global distribution of a key trophic guild contrasts with common latitudinal diversity patterns. Ecology, 2011, 92, 1839-1848.	1.5	162
8	A conceptual model of litter breakdown in low order streams. International Review of Hydrobiology, 2015, 100, 1-12.	0.5	155
9	Global patterns and drivers of ecosystem functioning in rivers and riparian zones. Science Advances, 2019, 5, eaav0486.	4.7	133
10	Impacts of hypoxic events surpass those of future ocean warming and acidification. Nature Ecology and Evolution, 2021, 5, 311-321.	3.4	116
11	Effects of litter diversity on decomposition and biological colonization of submerged litter in temperate and tropical streams. Freshwater Science, 2012, 31, 945-962.	0.9	115
12	Global patterns of stream detritivore distribution: implications for biodiversity loss in changing climates. Global Ecology and Biogeography, 2012, 21, 134-141.	2.7	114
13	Effects of human-driven water stress on river ecosystems: a meta-analysis. Scientific Reports, 2018, 8, 11462.	1.6	104
14	Effects of anthropogenic heavy metal contamination on litter decomposition in streams – A meta-analysis. Environmental Pollution, 2016, 210, 261-270.	3.7	90
15	Future increase in temperature more than decrease in litter quality can affect microbial litter decomposition in streams. Oecologia, 2011, 167, 279-291.	0.9	89
16	Biotic and abiotic variables influencing plant litter breakdown in streams: a global study. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152664.	1.2	86
17	Riparian land use and the relationship between the benthos and litter decomposition in tropical montane streams. Freshwater Biology, 2010, 55, 1719-1733.	1.2	85
18	Role of physical fragmentation and invertebrate activity in the breakdown rate of leaves. Archiv FÃ $\frac{1}{4}$ r Hydrobiologie, 2006, 165, 493-513.	1.1	84

#	Article	IF	Citations
19	Evaluation of stream ecological integrity using litter decomposition and benthic invertebrates. Environmental Pollution, 2008, 153, 440-449.	3.7	78
20	Stream Ecosystem Functioning in an Agricultural Landscape. Advances in Ecological Research, 2011, , 211-276.	1.4	78
21	Eucalyptus plantations affect fungal communities associated with leaf-litter decomposition in Iberian streams. Archiv Für Hydrobiologie, 2006, 166, 467-490.	1.1	77
22	Effect of increased atmospheric CO ₂ on the performance of an aquatic detritivore through changes in water temperature and litter quality. Global Change Biology, 2010, 16, 3284-3296.	4.2	62
23	Litter Decomposition as an Indicator of Stream Ecosystem Functioning at Local-to-Continental Scales. Advances in Ecological Research, 2016, 55, 99-182.	1.4	60
24	A meta-analysis on the effects of changes in the composition of native forests on litter decomposition in streams. Forest Ecology and Management, 2016, 364, 27-38.	1.4	60
25	Riparian plant litter quality increases with latitude. Scientific Reports, 2017, 7, 10562.	1.6	53
26	Biodiversity of leaf litter fungi in streams along a latitudinal gradient. Science of the Total Environment, 2019, 661, 306-315.	3.9	53
27	Effects of experimental warming, litter species, and presence of macroinvertebrates on litter decomposition and associated decomposers in a temperate mountain stream. Canadian Journal of Fisheries and Aquatic Sciences, 2015, 72, 206-216.	0.7	49
28	A Global Assessment of the Effects of Eucalyptus Plantations on Stream Ecosystem Functioning. Ecosystems, 2019, 22, 629-642.	1.6	45
29	Effect of experimental and seasonal warming on litter decomposition in a temperate stream. Aquatic Sciences, 2014, 76, 155-163.	0.6	44
30	Aquatic hyphomycetes, benthic macroinvertebrates and leaf litter decomposition in streams naturally differing in riparian vegetation. Aquatic Ecology, 2016, 50, 711-725.	0.7	42
31	Leaf litter decomposition in remote oceanic island streams is driven by microbes and depends on litter quality and environmental conditions. Freshwater Biology, 2016, 61, 783-799.	1.2	42
32	Future increase in temperature may stimulate litter decomposition in temperate mountain streams: evidence from a stream manipulation experiment. Freshwater Biology, 2015, 60, 881-892.	1.2	41
33	The effects of eucalypt plantations on plant litter decomposition and macroinvertebrate communities in Iberian streams. Forest Ecology and Management, 2015, 335, 129-138.	1.4	38
34	Do Invertebrate Activity and Current Velocity Affect Fungal Assemblage Structure in Leaves?. International Review of Hydrobiology, 2006, 91, 1-14.	0.5	33
35	Fungal alteration of the elemental composition of leaf litter affects shredder feeding activity. Freshwater Biology, 2015, 60, 1755-1771.	1.2	32
36	Nutrient enrichment in water more than in leaves affects aquatic microbial litter processing. Oecologia, 2017, 184, 555-568.	0.9	32

#	Article	IF	CITATIONS
37	Organic Matter Decomposition and Ecosystem Metabolism as Tools to Assess the Functional Integrity of Streams and Rivers–A Systematic Review. Water (Switzerland), 2020, 12, 3523.	1.2	31
38	Combined Effects of Dissolved Nutrients and Oxygen on Plant Litter Decomposition and Associated Fungal Communities. Microbial Ecology, 2018, 75, 854-862.	1.4	30
39	A predictive model for freshwater bioassessment (Mondego River, Portugal). Hydrobiologia, 2007, 589, 55-68.	1.0	29
40	Contamination by uranium mine drainages affects fungal growth and interactions between fungal species and strains. Mycologia, 2010, 102, 1004-1011.	0.8	27
41	18. Stream pollution and fungi. , 2014, , 389-412.		26
42	Effects of elevated atmospheric CO ₂ concentration and temperature on litter decomposition in streams: A metaâ€analysis. International Review of Hydrobiology, 2019, 104, 14-25.	0.5	26
43	Seasonal Variability May Affect Microbial Decomposers and Leaf Decomposition More Than Warming in Streams. Microbial Ecology, 2016, 72, 263-276.	1.4	24
44	Leaf litter decomposition as a bioassessment tool of acidification effects in streams: Evidence from a field study and meta-analysis. Ecological Indicators, 2017, 79, 382-390.	2.6	24
45	Invasion of Native Riparian Forests by Acacia Species Affects In-Stream Litter Decomposition and Associated Microbial Decomposers. Microbial Ecology, 2021, 81, 14-25.	1.4	24
46	Litter quality and stream physicochemical properties drive global invertebrate effects on instream litter decomposition. Biological Reviews, 2022, 97, 2023-2038.	4.7	23
47	A global synthesis of human impacts on the multifunctionality of streams and rivers. Global Change Biology, 2022, 28, 4783-4793.	4.2	21
48	Replacement of native forests by conifer plantations affects fungal decomposer community structure but not litter decomposition in Atlantic island streams. Forest Ecology and Management, 2017, 389, 323-330.	1.4	20
49	Invasion of temperate deciduous broadleaf forests by Nâ€fixing tree species – consequences for stream ecosystems. Biological Reviews, 2021, 96, 877-902.	4.7	20
50	Latitudinal gradient of nestedness and its potential drivers in stream detritivores. Ecography, 2015, 38, 949-955.	2.1	19
51	Effects of whole-stream nitrogen enrichment and litter species mixing on litter decomposition and associated fungi. Limnologica, 2016, 58, 69-77.	0.7	19
52	Changes in dominance among species in aquatic hyphomycete assemblages do not affect litter decomposition rates. Aquatic Microbial Ecology, 2012, 66, 1-11.	0.9	19
53	A comparison of decomposition rates and biological colonization of leaf litter from tropical and temperate origins. Aquatic Ecology, 2021, 55, 925-940.	0.7	17
54	Leaf litter decomposition of sweet chestnut is affected more by oomycte infection of trees than by water temperature. Fungal Ecology, 2019, 41, 269-278.	0.7	16

#	Article	IF	CITATIONS
55	The breakdown of Blue Gum (Eucalyptus globulus Labill.) bark in a Portuguese stream. Fundamental and Applied Limnology, 2007, 168, 307-315.	0.4	15
56	Combined effects of water temperature and nutrients concentration on periphyton respiration – implications of global change. International Review of Hydrobiology, 2013, 98, 14-23.	0.5	14
57	The role of the environment in the distribution and composition of Trichoptera assemblages in streams. Archiv $F\tilde{A}^{1}\!\!/4$ r Hydrobiologie, 2005, 164, 493-512.	1.1	13
58	Aquatic hyphomycete strains from metal-contaminated and reference streams might respond differently to future increase in temperature. Mycologia, 2012, 104, 613-622.	0.8	13
59	Consumption, growth and survival of the endemic stream shredder Limnephilus atlanticus (Trichoptera, Limnephilidae) fed with distinct leaf species. Limnologica, 2017, 64, 31-37.	0.7	13
60	Global Patterns and Controls of Nutrient Immobilization on Decomposing Cellulose in Riverine Ecosystems. Global Biogeochemical Cycles, 2022, 36, .	1.9	12
61	Leaf litter decomposition on insular lentic systems: effects of macroinvertebrate presence, leaf species, and environmental conditions. Hydrobiologia, 2017, 784, 65-79.	1.0	11
62	Invasive Acacia Tree Species Affect Instream Litter Decomposition Through Changes in Water Nitrogen Concentration and Litter Characteristics. Microbial Ecology, 2021, 82, 257-273.	1.4	11
63	Warming, and the presence of a dominant shredder, drive variation in decomposer communities in a mountain stream. Aquatic Sciences, 2015, 77, 129-140.	0.6	10
64	Response of biofilm growth to experimental warming in a temperate stream. Ecohydrology, 2017, 10, e1868.	1.1	10
65	Litter Quality Is a Stronger Driver than Temperature of Early Microbial Decomposition in Oligotrophic Streams: a Microcosm Study. Microbial Ecology, 2021, 82, 897-908.	1.4	10
66	Combined effects of water temperature and nutrients concentration on periphyton respiration – implications of global change. International Review of Hydrobiology, 2013, 98, 14-23.	0.5	9
67	Contribution of aquatic shredders to leaf litter decomposition in Atlantic island streams depends on shredder density and litter quality. Marine and Freshwater Research, 2018, 69, 1432.	0.7	9
68	Decomposition of Fire ExposedEucalyptus Leaves in a Portuguese Lowland Stream. International Review of Hydrobiology, 2007, 92, 229-241.	0.5	8
69	Fungal Activity Associated with Decomposing Wood is Affected by Nitrogen Concentration in Water. International Review of Hydrobiology, 2007, 92, 1-8.	0.5	8
70	Contribution of macroinvertebrate shredders and aquatic hyphomycetes to litter decomposition in remote insular streams. Hydrobiologia, 2020, 847, 2337-2355.	1.0	7
71	Organic-matter decomposition as a bioassessment tool of stream functioning: A comparison of eight decomposition-based indicators exposed to different environmental changes. Environmental Pollution, 2021, 290, 118111.	3.7	7
72	Effects of Exotic Tree Plantations on Plant Litter Decomposition in Streams., 2021,, 297-322.		6

#	Article	IF	CITATIONS
73	Annual organic matter dynamics in a small temperate mountain stream. Annales De Limnologie, 2013, 49, 13-19.	0.6	5
74	Nutrient enrichment does not affect diet selection by a tropical shredder species in a mesocosm experiment. Limnologica, 2021, 89, 125883.	0.7	5
75	Total Phosphorus, Nitrogen and Carbon in Leaf Litter. , 2020, , 91-105.		5
76	Pathways, Mechanisms, and Consequences of Nutrient-Stimulated Plant Litter Decomposition in Streams., 2021,, 347-377.		4
77	Linking Microbial Decomposer Diversity to Plant Litter Decomposition and Associated Processes in Streams., 2021,, 163-192.		4
78	Decomposition of leaf litter mixtures in streams: effects of component litter species and current velocity. Aquatic Sciences, $2021, 83, 1$.	0.6	4
79	Increasing inputs of invasive Nâ€fixing <i>Acacia</i> litter decrease litter decomposition and associated microbial activity in streams. Freshwater Biology, 2022, 67, 292-308.	1.2	4
80	Aquatic Hyphomycetes from streams on Madeira Island (Portugal). Biodiversity Data Journal, 2020, 8, e53690.	0.4	3
81	Invasive forest pathogens affect the characteristics, microbial colonisation, and decomposition of leaf litter in streams. Freshwater Biology, 2022, 67, 416-429.	1.2	3
82	Plant Litter Decomposition as a Tool for Stream Ecosystem Assessment., 2021,, 483-509.		2
83	Impact of Climate Change on Aquatic Hyphomycetes. , 2020, , .		2
84	Microbial colonization and decomposition of commercial tea and native alder leaf litter in temperate streams. Aquatic Sciences, 2022, 84, 1.	0.6	2
85	Colonization and decomposition of litter produced by invasive Acacia dealbata and native tree species by stream microbial decomposers. , 2022, 41, 1.		2
86	Impact of Climate Change on Aquatic Hypho- and Terrestrial Macromycetes. , 2016, , 53-72.		1
87	Processssos ecológicos e serviços. , 2019, , 281-312.		0
88	A Primer for Meta-Analysis. , 2020, , 583-598.		O