## Yan-Yan Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1287186/publications.pdf Version: 2024-02-01



ΥΛΝ-ΥΛΝ ΗΠΑΝΟ

| #  | Article                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Differential Regulation of Two-Tiered Plant Immunity and Sexual Reproduction by ANXUR Receptor-Like<br>Kinases. Plant Cell, 2017, 29, 3140-3156.                                      | 6.6  | 89        |
| 2  | Suppression of rice miR168 improves yield, flowering time and immunity. Nature Plants, 2021, 7, 129-136.                                                                              | 9.3  | 74        |
| 3  | circRNAs Are Involved in the Rice- <i>Magnaporthe oryzae</i> Interaction. Plant Physiology, 2020, 182, 272-286.                                                                       | 4.8  | 65        |
| 4  | <i>Osaâ€miR1873</i> fineâ€tunes rice immunity against <i>Magnaporthe oryzae</i> and yield traits. Journal of Integrative Plant Biology, 2020, 62, 1213-1226.                          | 8.5  | 50        |
| 5  | The false smut pathogen <i>Ustilaginoidea virens</i> requires rice stamens for false smut ball formation. Environmental Microbiology, 2020, 22, 646-659.                              | 3.8  | 39        |
| 6  | The malectin-like receptor-like kinase LETUM1 modulates NLR protein SUMM2 activation via MEKK2 scaffolding. Nature Plants, 2020, 6, 1106-1115.                                        | 9.3  | 38        |
| 7  | Osa-miR162a fine-tunes rice resistance to Magnaporthe oryzae and Yield. Rice, 2020, 13, 38.                                                                                           | 4.0  | 36        |
| 8  | Ubiquitylome analysis reveals a central role for the ubiquitin-proteasome system in plant innate immunity. Plant Physiology, 2021, 185, 1943-1965.                                    | 4.8  | 30        |
| 9  | Ectopic Expression of RESISTANCE TO POWDERY MILDEW8.1 Confers Resistance to Fungal and Oomycete Pathogens in Arabidopsis. Plant and Cell Physiology, 2014, 55, 1484-1496.             | 3.1  | 29        |
| 10 | A trimeric CrRLK1L-LLG1 complex genetically modulates SUMM2-mediated autoimmunity. Nature Communications, 2020, 11, 4859.                                                             | 12.8 | 28        |
| 11 | Fine-Tuning Roles of Osa-miR159a in Rice Immunity Against Magnaporthe oryzae and Development. Rice, 2021, 14, 26.                                                                     | 4.0  | 25        |
| 12 | RPW8.1 enhances the ethyleneâ€signaling pathway to feedbackâ€attenuate its mediated cell death and disease resistance in <i>Arabidopsis</i> . New Phytologist, 2021, 229, 516-531.    | 7.3  | 20        |
| 13 | Rice miR1432 Fine-Tunes the Balance of Yield and Blast Disease Resistance via Different Modules. Rice, 2021, 14, 87.                                                                  | 4.0  | 20        |
| 14 | <scp>Osaâ€miR535</scp> targets <scp><i>SQUAMOSA</i></scp> <i>promoter binding proteinâ€like 4</i> to<br>regulate blast disease resistance in rice. Plant Journal, 2022, 110, 166-178. | 5.7  | 20        |
| 15 | Blocking Osaâ€miR1871 enhances rice resistance against <i>Magnaporthe oryzae</i> and yield. Plant<br>Biotechnology Journal, 2022, 20, 646-659.                                        | 8.3  | 19        |
| 16 | The APEX Approaches: A Unified LRR-RK Network Revealed. Trends in Plant Science, 2018, 23, 372-374.                                                                                   | 8.8  | 14        |
| 17 | Multiple intramolecular trafficking signals in RESISTANCE TO POWDERY MILDEW 8.2 are engaged in activation of cell death and defense. Plant Journal, 2019, 98, 55-70.                  | 5.7  | 13        |
| 18 | Blocking miR530 Improves Rice Resistance, Yield, and Maturity. Frontiers in Plant Science, 2021, 12, 729560.                                                                          | 3.6  | 10        |

Yan-Yan Huang

| #  | Article                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | RNA Interference-Based Screen Reveals Concerted Functions of MEKK2 and CRCK3 in Plant Cell Death<br>Regulation. Plant Physiology, 2020, 183, 331-344.                                  | 4.8 | 9         |
| 20 | Loss and Natural Variations of Blast Fungal Avirulence Genes Breakdown Rice Resistance Genes in the<br>Sichuan Basin of China. Frontiers in Plant Science, 2022, 13, 788876.           | 3.6 | 9         |
| 21 | Identification of FERONIA-like receptor genes involved in rice-Magnaporthe oryzae interaction.<br>Phytopathology Research, 2020, 2, .                                                  | 2.4 | 8         |
| 22 | The Flower-Infecting Fungus Ustilaginoidea virens Subverts Plant Immunity by Secreting a<br>Chitin-Binding Protein. Frontiers in Plant Science, 2021, 12, 733245.                      | 3.6 | 8         |
| 23 | Cloning and Functional Verification of CYP408A3 and CYP6CS3 Related to Chlorpyrifos Resistance in the Sogatella furcifera (HorvÃjth) (Hemiptera: Delphacidae). Biology, 2021, 10, 795. | 2.8 | 3         |