Aaron Gross

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1287052/publications.pdf

Version: 2024-02-01

759233 642732 25 757 12 23 citations h-index g-index papers 27 27 27 1097 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Assessing Varroa destructor acaricide resistance in Apis mellifera colonies of Virginia. Apidologie, 2021, 52, 1278-1290.	2.0	3
2	Association of Salivary Cholinesterase With Arthropod Vectors of Disease. Journal of Medical Entomology, 2020, 57, 1679-1685.	1.8	5
3	Resistance monitoring to four insecticides and mechanisms of resistance in <scp><i>Lygus lineolaris</i></scp> Palisot de Beauvois (Hemiptera: Miridae) populations of southeastern <scp>USA</scp> cotton. Pest Management Science, 2020, 76, 3935-3944.	3.4	15
4	Plant Essential Oils Enhance Diverse Pyrethroids against Multiple Strains of Mosquitoes and Inhibit Detoxification Enzyme Processes. Insects, 2018, 9, 132.	2.2	49
5	Characterizing Permethrin and Etofenprox Resistance in Two Common Laboratory Strains of Anopheles gambiae (Diptera: Culicidae). Insects, 2018, 9, 146.	2.2	4
6	Toxicology of potassium channel-directed compounds in mosquitoes. NeuroToxicology, 2017, 60, 214-223.	3.0	15
7	Interaction of plant essential oil terpenoids with the southern cattle tick tyramine receptor: A potential biopesticide target. Chemico-Biological Interactions, 2017, 263, 1-6.	4.0	36
8	N′-mono- and N, N′-diacyl derivatives of benzyl and arylhydrazines as contact insecticides against adult Anopheles gambiae. Pesticide Biochemistry and Physiology, 2017, 143, 33-38.	3.6	8
9	Essential oils enhance the toxicity of permethrin against <i><scp>A</scp>edes aegypti</i> and <i><scp>A</scp>nopheles gambiae</i> Medical and Veterinary Entomology, 2017, 31, 55-62.	1.5	40
10	Toxicity and Physiological Actions of Carbonic Anhydrase Inhibitors to Aedes aegypti and Drosophila melanogaster. Insects, 2017, 8, 2.	2.2	12
11	Bivalent Carbamates as Novel Control Agents of the Malaria Mosquito, <i>Anopheles gambiae</i> . Chimia, 2016, 70, 704-708.	0.6	4
12	Toxicity and Synergistic Activities of Chalcones AgainstAedes aegypti(Diptera: Culicidae) andDrosophila melanogaster(Diptera: Drosophilidae). Journal of Medical Entomology, 2016, 54, tjw183.	1.8	7
13	An insecticide resistance-breaking mosquitocide targeting inward rectifier potassium channels in vectors of Zika virus and malaria. Scientific Reports, 2016, 6, 36954.	3.3	55
14	Carbamate and pyrethroid resistance in the akron strain of Anopheles gambiae. Pesticide Biochemistry and Physiology, 2015, 121, 116-121.	3.6	31
15	Comparison of the Insecticidal Characteristics of Commercially Available Plant Essential Oils Against <i>Aedes aegypti</i> and <i>Anopheles gambiae</i> Entomology, 2015, 52, 993-1002.	1.8	44
16	Pharmacological characterization of a tyramine receptor from the southern cattle tick, Rhipicephalus (Boophilus) microplus. Insect Biochemistry and Molecular Biology, 2015, 63, 47-53.	2.7	45
17	Difluoromethyl ketones: Potent inhibitors of wild type and carbamate-insensitive G119S mutant Anopheles gambiae acetylcholinesterase. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4405-4411.	2.2	35
18	G-Protein-Coupled Receptors (GPCRs) as Biopesticide Targets: A Focus on Octopamine and Tyramine Receptors. ACS Symposium Series, 2014, , 45-56.	0.5	2

AARON GROSS

#	Article	IF	CITATION
19	Investigating the Effect of Plant Essential Oils against the American Cockroach Octopamine Receptor (Pa oal) Expressed in Yeast. ACS Symposium Series, 2014, , 113-130.	0.5	5
20	Biopesticides: State of the Art and Future Opportunities. Journal of Agricultural and Food Chemistry, 2014, 62, 11613-11619.	5.2	201
21	The phenolic monoterpenoid carvacrol inhibits the binding of nicotine to the housefly nicotinic acetylcholine receptor. Pest Management Science, 2013, 69, 775-780.	3.4	75
22	Quantitative Structure-Activity Relationships (QSARs) of Monoterpenoids at an Expressed American Cockroach Octopamine Receptor. ACS Symposium Series, 2013, , 97-110.	0.5	5
23	Sorption and Photodegradation Processes Govern Distribution and Fate of Sulfamethazine in Freshwater–Sediment Microcosms. Environmental Science & Environmental Science & 10877-10883.	10.0	45
24	Human aldehyde dehydrogenase-catalyzed oxidation of ethylene glycol ether aldehydes. Chemico-Biological Interactions, 2009, 178, 56-63.	4.0	10
25	Muscarinic Acetylcholine Receptor Activation Synergizes the Knockdown and Toxicity of GABAâ€Gated Chloride Channel Insecticides. Pest Management Science, 0, , .	3.4	2