Feifei Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1286833/publications.pdf Version: 2024-02-01

#	ARTICLE	IF	CITATIONS
1	High-precision tumor resection down to few-cell level guided by NIR-IIb molecular fluorescence imaging. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2123111119.	3.3	26
2	In vivo non-invasive confocal fluorescence imaging beyond 1,700 nm using superconducting nanowire single-photon detectors. Nature Nanotechnology, 2022, 17, 653-660.	15.6	88
3	Near-Infrared-II Nanoparticles for Cancer Imaging of Immune Checkpoint Programmed Death-Ligand 1 and Photodynamic/Immune Therapy. ACS Nano, 2021, 15, 515-525.	7.3	86
4	In vivo NIR-II structured-illumination light-sheet microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	39
5	Thiophene donor for NIR-II fluorescence imaging-guided photothermal/photodynamic/chemo combination therapy. Acta Biomaterialia, 2021, 127, 287-297.	4.1	21
6	Improving photoacoustic-imaging axial positioning accuracy and signal-to-noise ratio using acoustic echo effect. Sensors and Actuators A: Physical, 2021, 329, 112788.	2.0	3
7	Deep learning for in vivo near-infrared imaging. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	53
8	Advances in Dielectric Microspherical Lens Nanoscopy: Label-Free Superresolution Imaging. IEEE Nanotechnology Magazine, 2021, 15, 38-C3.	0.9	2
9	Fabrication of flexible microlens arrays for parallel super-resolution imaging. Applied Surface Science, 2020, 504, 144375.	3.1	26
10	Crossâ€Linkâ€Functionalized Nanoparticles for Rapid Excretion in Nanotheranostic Applications. Angewandte Chemie, 2020, 132, 20733-20741.	1.6	6
11	Crossâ€Linkâ€Functionalized Nanoparticles for Rapid Excretion in Nanotheranostic Applications. Angewandte Chemie - International Edition, 2020, 59, 20552-20560.	7.2	35
12	Microsphere-Based Super-Resolution Imaging for Visualized Nanomanipulation. ACS Applied Materials & Interfaces, 2020, 12, 48093-48100.	4.0	28
13	Determination of Microsphere-Lens Magnification Using Micro-Robotic Scanning Superlens Nanoscopy. IEEE Open Journal of Nanotechnology, 2020, 1, 65-76.	0.9	3
14	Scanning Super-Resolution Imaging in Enclosed Environment by Laser Tweezer Controlled Superlens. Biophysical Journal, 2020, 119, 2451-2460.	0.2	10
15	Enhanced high-quality super-resolution imaging in air using microsphere lens groups. Optics Letters, 2020, 45, 2981.	1.7	18
16	Facile self-assembly synthesis of Î ³ -Fe2O3 /graphene oxide for enhanced photo-Fenton reaction. Environmental Pollution, 2019, 248, 229-237.	3.7	59
17	Imaging with Optogenetically Engineered Living Cells as a Photodetector. Advanced Biology, 2019, 3, 1800319.	3.0	5
18	Development of an image biosensor based on an optogenetically engineered cell for visual prostheses. Nanoscale, 2019, 11, 13213-13218.	2.8	5

Feifei Wang

#	Article	IF	CITATIONS
19	Light-sheet microscopy in the near-infrared II window. Nature Methods, 2019, 16, 545-552.	9.0	151
20	Molecular Imaging in the Second Nearâ€Infrared Window. Advanced Functional Materials, 2019, 29, 1900566.	7.8	125
21	Photonic Nanojet Sub-Diffraction Nano-Fabrication With <italic>in situ</italic> Super-Resolution Imaging. IEEE Nanotechnology Magazine, 2019, 18, 226-233.	1.1	15
22	In vivo molecular imaging for immunotherapy using ultra-bright near-infrared-IIb rare-earth nanoparticles. Nature Biotechnology, 2019, 37, 1322-1331.	9.4	398
23	In situ printing of liquid superlenses for subdiffraction-limited color imaging of nanobiostructures in nature. Microsystems and Nanoengineering, 2019, 5, 1.	3.4	67
24	Super-resolution Monitoring of React-on-demand Photo-assisted Electrochemical Printing via Microsphere Nanoscopy. , 2019, , .		1
25	Visible light induced electropolymerization of suspended hydrogel bioscaffolds in a microfluidic chip. Biomaterials Science, 2018, 6, 1371-1378.	2.6	13
26	Thermometry of photosensitive and optically induced electrokinetics chips. Microsystems and Nanoengineering, 2018, 4, 26.	3.4	2
27	Developing a Bright NIRâ€II Fluorophore with Fast Renal Excretion and Its Application in Molecular Imaging of Immune Checkpoint PD‣1. Advanced Functional Materials, 2018, 28, 1804956.	7.8	85
28	Bright quantum dots emitting at â^¼1,600 nm in the NIR-IIb window for deep tissue fluorescence imaging. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6590-6595.	3.3	310
29	Laser-nanomachining by microsphere induced photonic nanojet. Sensors and Actuators A: Physical, 2017, 258, 115-122.	2.0	13
30	Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging. Nature Communications, 2016, 7, 13748.	5.8	141
31	Three-Dimensional Super-Resolution Morphology by Near-Field Assisted White-Light Interferometry. Scientific Reports, 2016, 6, 24703.	1.6	79
32	Silver nanostructures synthesis via optically induced electrochemical deposition. Scientific Reports, 2016, 6, 28035.	1.6	19
33	Rapidly patterning micro/nano devices by directly assembling ions and nanomaterials. Scientific Reports, 2016, 6, 32106.	1.6	21
34	Super-Resolution Real Imaging in Microsphere-Assisted Microscopy. PLoS ONE, 2016, 11, e0165194.	1.1	52
35	Subnanomachining by Ultrasonic-Vibration-Assisted Atomic Force Microscopy. IEEE Nanotechnology Magazine, 2015, 14, 735-741.	1.1	6
36	Improving Atomic Force Microscopy Imaging by a Direct Inverse Asymmetric PI Hysteresis Model. Sensors, 2015, 15, 3409-3425.	2.1	20

Feifei Wang

#	Article	IF	CITATIONS
37	Super-resolution endoscopy for real-time wide-field imaging. Optics Express, 2015, 23, 16803.	1.7	31
38	Exploring pulse-voltage-triggered optically induced electrohydrodynamic instability for femtolitre droplet generation. Applied Physics Letters, 2014, 104, .	1.5	10
39	Optically induced electrohydrodynamic instability-based micro-patterning of fluidic thin films. Microfluidics and Nanofluidics, 2014, 16, 1097-1106.	1.0	8
40	Mechanically Modulated Dewetting by Atomic Force Microscope for Micro- and Nano- Droplet Array Fabrication. Scientific Reports, 2014, 4, 6524.	1.6	6
41	Non-ultraviolet-based patterning of polymer structures by optically induced electrohydrodynamic instability. Applied Physics Letters, 2013, 103, 214101.	1.5	10