Di He

List of Publications by Citations

Source: https://exaly.com/author-pdf/1286585/di-he-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

51	3,752 citations	32	51
papers		h-index	g-index
51	4,559 ext. citations	9.9	5.89
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
51	The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: the development in zero-valent iron technology in the last two decades (1994-2014). <i>Water Research</i> , 2015 , 75, 224-48	12.5	560
50	Faradaic reactions in capacitive deionization (CDI) - problems and possibilities: A review. <i>Water Research</i> , 2018 , 128, 314-330	12.5	340
49	Faradaic Reactions in Water Desalination by Batch-Mode Capacitive Deionization. <i>Environmental Science and Technology Letters</i> , 2016 , 3, 222-226	11	203
48	Various cell architectures of capacitive deionization: Recent advances and future trends. <i>Water Research</i> , 2019 , 150, 225-251	12.5	174
47	Comparison of Faradaic reactions in capacitive deionization (CDI) and membrane capacitive deionization (MCDI) water treatment processes. <i>Water Research</i> , 2017 , 120, 229-237	12.5	168
46	Silver Nanoparticle R eactive Oxygen Species Interactions: Application of a Charging D ischarging Model. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 5461-5468	3.8	158
45	Fluoride and nitrate removal from brackish groundwaters by batch-mode capacitive deionization. <i>Water Research</i> , 2015 , 84, 342-9	12.5	149
44	Silver nanoparticle-algae interactions: oxidative dissolution, reactive oxygen species generation and synergistic toxic effects. <i>Environmental Science & Environmental Scienc</i>	10.3	134
43	Superoxide-mediated formation and charging of silver nanoparticles. <i>Environmental Science & Environmental Science & Technology</i> , 2011 , 45, 1428-34	10.3	130
42	H2O2-mediated oxidation of zero-valent silver and resultant interactions among silver nanoparticles, silver ions, and reactive oxygen species. <i>Langmuir</i> , 2012 , 28, 10266-75	4	127
41	Effects of aggregate structure on the dissolution kinetics of citrate-stabilized silver nanoparticles. <i>Environmental Science & Environmental Science </i>	10.3	94
40	Analysis of capacitive and electrodialytic contributions to water desalination by flow-electrode CDI. <i>Water Research</i> , 2018 , 144, 296-303	12.5	88
39	Development of Redox-Active Flow Electrodes for High-Performance Capacitive Deionization. <i>Environmental Science & Environmental Science & Environment</i>	10.3	87
38	Effect of Structural Transformation of Nanoparticulate Zero-Valent Iron on Generation of Reactive Oxygen Species. <i>Environmental Science & Environmental Science & Environment</i>	10.3	87
37	Long-term investigation of a novel electrochemical membrane bioreactor for low-strength municipal wastewater treatment. <i>Water Research</i> , 2015 , 78, 98-110	12.5	84
36	Modeling the Kinetics of Contaminants Oxidation and the Generation of Manganese(III) in the Permanganate/Bisulfite Process. <i>Environmental Science & Environmental Science & E</i>	10.3	78
35	Active chlorine mediated ammonia oxidation revisited: Reaction mechanism, kinetic modelling and implications. <i>Water Research</i> , 2018 , 145, 220-230	12.5	77

(2020-2018)

34	Capacitive Membrane Stripping for Ammonia Recovery (CapAmm) from Dilute Wastewaters. <i>Environmental Science and Technology Letters</i> , 2018 , 5, 43-49	11	74
33	Kinetic Modeling of the Electro-Fenton Process: Quantification of Reactive Oxygen Species Generation. <i>Electrochimica Acta</i> , 2015 , 176, 51-58	6.7	73
32	Optimization of sulfate removal from brackish water by membrane capacitive deionization (MCDI). Water Research, 2017 , 121, 302-310	12.5	70
31	Versatile applications of capacitive deionization (CDI)-based technologies. <i>Desalination</i> , 2020 , 482, 1143	390 .3	69
30	Application of permanganate in the oxidation of micropollutants: a mini review. <i>Frontiers of Environmental Science and Engineering in China</i> , 2010 , 4, 405-413		68
29	Fluoride Removal from Brackish Groundwaters by Constant Current Capacitive Deionization (CDI). <i>Environmental Science & Environmental Science & Enviro</i>	10.3	62
28	Ascorbic acid promoted magnetite Fenton degradation of alachlor: Mechanistic insights and kinetic modeling. <i>Applied Catalysis B: Environmental</i> , 2020 , 267, 118383	21.8	52
27	Influence of humic acids of different origins on oxidation of phenol and chlorophenols by permanganate. <i>Journal of Hazardous Materials</i> , 2010 , 182, 681-8	12.8	50
26	Fenton-like zero-valent silver nanoparticle-mediated hydroxyl radical production. <i>Journal of Catalysis</i> , 2014 , 317, 198-205	7.3	47
25	Comparison of faradaic reactions in flow-through and flow-by capacitive deionization (CDI) systems. <i>Electrochimica Acta</i> , 2019 , 299, 727-735	6.7	47
24	Synthesis and characterization of antibacterial silver nanoparticle-impregnated rice husks and rice husk ash. <i>Environmental Science & Environmental S</i>	10.3	43
23	Influence of different nominal molecular weight fractions of humic acids on phenol oxidation by permanganate. <i>Environmental Science & Environmental &</i>	10.3	37
22	Electro-assisted Adsorption of Zn(II) on Activated Carbon Cloth in Batch-Flow Mode: Experimental and Theoretical Investigations. <i>Environmental Science & Environmental Scienc</i>	10.3	34
21	The tortoise versus the hare - Possible advantages of microparticulate zerovalent iron (mZVI) over nanoparticulate zerovalent iron (nZVI) in aerobic degradation of contaminants. <i>Water Research</i> , 2016 , 105, 331-340	12.5	33
20	Investigation of pH-dependent phosphate removal from wastewaters by membrane capacitive deionization (MCDI). <i>Environmental Science: Water Research and Technology</i> , 2017 , 3, 875-882	4.2	32
19	Palladium Recovery through Membrane Capacitive Deionization from Metal Plating Wastewater. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 1692-1701	8.3	30
18	Effects of Goodly Buffers and pH on the Structural Transformation of Zero Valent Iron and the Oxidative Degradation of Contaminants. <i>Environmental Science & Environmental Sc</i>	10.3	25
17	Bimetallic nanoparticles/metal-organic frameworks: Synthesis, applications and challenges. <i>Applied Materials Today</i> , 2020 , 19, 100564	6.6	23

16	Photolysis of low concentration H2S under UV/VUV irradiation emitted from high frequency discharge electrodeless lamps. <i>Chemosphere</i> , 2014 , 109, 202-7	8.4	23
15	Silver sulfide nanoparticles in aqueous environments: formation, transformation and toxicity. <i>Environmental Science: Nano</i> , 2019 , 6, 1674-1687	7.1	22
14	Reductive reactivity of borohydride- and dithionite-synthesized iron-based nanoparticles: A comparative study. <i>Journal of Hazardous Materials</i> , 2016 , 303, 101-10	12.8	20
13	Concentration, fluxes, risks, and sources of heavy metals in atmospheric deposition in the Lihe River watershed, Taihu region, eastern China. <i>Environmental Pollution</i> , 2019 , 255, 113301	9.3	20
12	Mechanistic and kinetic insights into the ligand-promoted depassivation of bimetallic zero-valent iron nanoparticles. <i>Environmental Science: Nano</i> , 2016 , 3, 737-744	7.1	18
11	Optimizing the design and synthesis of supported silver nanoparticles for low cost water disinfection. <i>Environmental Science & Environmental Science </i>	10.3	14
10	Exploring the essential factors of performance improvement in sludge membrane bioreactor technology coupled with symbiotic algae. <i>Water Research</i> , 2020 , 181, 115843	12.5	10
9	Comparison of Energy Consumption of Osmotically Assisted Reverse Osmosis and Low-Salt-Rejection Reverse Osmosis for Brine Management. <i>Environmental Science & amp; Technology</i> , 2021 , 55, 10714-10723	10.3	5
8	Ligand-mediated contaminant degradation by bare and carboxymethyl cellulose-coated bimetallic palladium-zero valent iron nanoparticles in high salinity environments. <i>Journal of Environmental Sciences</i> , 2019 , 77, 303-311	6.4	4
7	Coexistence of humic acid enhances the reductive removal of diatrizoate via depassivating zero-valent iron under aerobic conditions. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 14634-14643	13	2
6	Sulfidation of ferric (hydr)oxides and its implication on contaminants transformation: a review. <i>Science of the Total Environment</i> , 2021 , 816, 151574	10.2	2
5	One-pot synthesis of magnetic Prussian blue for the highly selective removal of thallium(I) from wastewater: Mechanism and implications. <i>Journal of Hazardous Materials</i> , 2022 , 423, 126972	12.8	2
4	Destruction of Toluene by the Combination of High Frequency Discharge Electrodeless Lamp and Manganese Oxide-Impregnated Granular Activated Carbon Catalyst. <i>International Journal of Photoenergy</i> , 2014 , 2014, 1-9	2.1	1
3	Mechanistic insight into the biofilm formation and process performance of a passive aeration ditch (PAD) for decentralized wastewater treatment. <i>Frontiers of Environmental Science and Engineering</i> , 2022 , 16, 1	5.8	1
2	Hot-pressed membrane assemblies enhancing the biofilm formation and nitrogen removal in a membrane-aerated biofilm reactor <i>Science of the Total Environment</i> , 2022 , 155003	10.2	1
1	Mechanistic insight into pH-dependent adsorption and coprecipitation of chelated heavy metals by in-situ formed iron (oxy)hydroxides. <i>Journal of Colloid and Interface Science</i> , 2022 , 608, 864-872	9.3	0