Regis R Lamberts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1286401/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regulation of cardiac ryanodine receptor function by the cyclic-GMP dependent protein kinase G. Current Research in Physiology, 2022, 5, 171-178.	1.7	5
2	Estimating heart mass from heart volume as measured from post-mortem computed tomography. Forensic Science, Medicine, and Pathology, 2022, 18, 333-342.	1.4	6
3	Stage-specific regulation of signalling pathways to differentiate pluripotent stem cells to cardiomyocytes with ventricular lineage. Stem Cell Research and Therapy, 2022, 13, 185.	5.5	0
4	Identifying sex differences in predictors of epicardial fat cell morphology. Adipocyte, 2022, 11, 325-334.	2.8	1
5	Human Atrial Fibrillation Is Not Associated With Remodeling of Ryanodine Receptor Clusters. Frontiers in Cell and Developmental Biology, 2021, 9, 633704.	3.7	7
6	Elevated myocardial fructose and sorbitol levels are associated with diastolic dysfunction in diabetic patients, and cardiomyocyte lipid inclusions in vitro. Nutrition and Diabetes, 2021, 11, 8.	3.2	11
7	Long-chain acylcarnitine 18:1 acutely increases human atrial myocardial contractility and arrhythmia susceptibility. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, H162-H174.	3.2	3
8	Increased neuronal activation in sympathoregulatory regions of the brain and spinal cord in type 2 diabetic rats. Journal of Neuroendocrinology, 2021, 33, e13016.	2.6	1
9	Thiamine increases resident endoglin positive cardiac progenitor cells and atrial contractile force in humans: A randomised controlled trial. International Journal of Cardiology, 2021, 341, 70-73.	1.7	1
10	Acute interaction between human epicardial adipose tissue and human atrial myocardium induces arrhythmic susceptibility. American Journal of Physiology - Endocrinology and Metabolism, 2020, 318, E164-E172.	3.5	8
11	Long-Chain Acylcarnitines and Cardiac Excitation-Contraction Coupling: Links to Arrhythmias. Frontiers in Physiology, 2020, 11, 577856.	2.8	30
12	Inotropic and lusitropic, but not arrhythmogenic, effects of adipocytokine resistin on human atrial myocardium. American Journal of Physiology - Endocrinology and Metabolism, 2020, 319, E540-E547.	3.5	4
13	Carvedilol and metoprolol are both able to preserve myocardial function in type 2 diabetes. Physiological Reports, 2020, 8, e14394.	1.7	4
14	Ventricular Weight Increases Proportionally With Total Heart Weight in Postmortem Population. American Journal of Forensic Medicine and Pathology, 2020, 41, 259-262.	0.8	2
15	Correlation between epicardial adipose tissue and body mass index in New Zealand ethnic populations. New Zealand Medical Journal, 2020, 133, 22-32.	0.5	5
16	Epicardial adipocyte size does not correlate with body mass index. Cardiovascular Pathology, 2019, 43, 107144.	1.6	10
17	β 2 â€Adrenoceptors indirectly support impaired β 1 â€adrenoceptor responsiveness in the isolated type 2 diabetic rat heart. Experimental Physiology, 2019, 104, 808-818.	2.0	7
18	Myocardial tissue characterisation using echocardiographic deformation imaging. Cardiovascular Ultrasound, 2019, 17, 27.	1.6	26

REGIS R LAMBERTS

#	Article	IF	CITATIONS
19	Relationship between epicardial adipose tissue thickness and epicardial adipocyte size with increasing body mass index. Adipocyte, 2019, 8, 412-420.	2.8	39
20	HIIT Improves Left Ventricular Exercise Response in Adults with Type 2 Diabetes. Medicine and Science in Sports and Exercise, 2019, 51, 1099-1105.	0.4	24
21	Ghrelin Preserves Ischemia-Induced Vasodilation of Male Rat Coronary Vessels Following β-Adrenergic Receptor Blockade. Endocrinology, 2018, 159, 1763-1773.	2.8	9
22	Inhibition of calcium/calmodulin-dependent kinase II restores contraction and relaxation in isolated cardiac muscle from type 2 diabetic rats. Cardiovascular Diabetology, 2018, 17, 89.	6.8	38
23	Cardiac βâ€∎drenergic responsiveness of obese Zucker rats: The role of AMPK. Experimental Physiology, 2018, 103, 1067-1075.	2.0	5
24	The diagnostic sensitivity of circulating cardio-enriched microRNAs is increased after normalization of high-density lipoprotein levels. International Journal of Cardiology, 2017, 236, 498-500.	1.7	6
25	β ₁ â€Adrenoceptor, but not β ₂ â€adrenoceptor, subtype regulates heart rate in type 2 diabetic rats <i>in vivo</i> . Experimental Physiology, 2017, 102, 911-923.	2.0	8
26	To the heart of activation heat. Journal of Physiology, 2017, 595, 4577-4578.	2.9	3
27	Down-regulation of miR-15a/b accelerates fibrotic remodelling in the TypeÂ2 diabetic human and mouse heart. Clinical Science, 2017, 131, 847-863.	4.3	62
28	Effect of type 2 diabetes, surgical incision, and volatile anesthesia on hemodynamics in the rat. Physiological Reports, 2017, 5, e13352.	1.7	4
29	Concise Review: Challenges in Regenerating the Diabetic Heart: A Comprehensive Review. Stem Cells, 2017, 35, 2009-2026.	3.2	11
30	Impaired ventricular filling limits cardiac reserve during submaximal exercise in people with type 2 diabetes. Cardiovascular Diabetology, 2017, 16, 160.	6.8	24
31	The Type 2 Diabetic Heart: Its Role in Exercise Intolerance and the Challenge to Find Effective Exercise Interventions. Sports Medicine, 2016, 46, 1605-1617.	6.5	23
32	Type-2 diabetes increases autophagy in the human heart through promotion of Beclin-1 mediated pathway. International Journal of Cardiology, 2016, 202, 13-20.	1.7	97
33	Does Autonomic Dysregulation Reduce Cardiac Reserve In Type 2 Diabetes?. Medicine and Science in Sports and Exercise, 2016, 48, 206.	0.4	0
34	Chronic bilateral renal denervation reduces cardiac hypertrophic remodelling but not βâ€adrenergic responsiveness in hypertensive type 1 diabetic rats. Experimental Physiology, 2015, 100, 628-639.	2.0	9
35	Cardiovascular Control during Exercise in Type 2 Diabetes Mellitus. Journal of Diabetes Research, 2015, 2015, 1-11.	2.3	34
36	Data supporting the activation of autophagy genes in the diabetic heart. Data in Brief, 2015, 5, 269-275.	1.0	5

REGIS R LAMBERTS

#	Article	IF	CITATIONS
37	Chamber-specific changes in calcium-handling proteins in the type 2 diabetic human heart with preserved ejection fraction. International Journal of Cardiology, 2015, 193, 53-55.	1.7	10
38	The role of CaMKII in diabetic heart dysfunction. Heart Failure Reviews, 2015, 20, 589-600.	3.9	30
39	Increased Efferent Cardiac Sympathetic Nerve Activity and Defective Intrinsic Heart Rate Regulation in Type 2 Diabetes. Diabetes, 2015, 64, 2944-2956.	0.6	36
40	Increased haemodynamic adrenergic load with isoflurane anaesthesia in type 2 diabetic and obese rats in vivo. Cardiovascular Diabetology, 2014, 13, 161.	6.8	13
41	Impaired relaxation despite upregulated calcium-handling protein atrial myocardium from type 2 diabetic patients with preserved ejection fraction. Cardiovascular Diabetology, 2014, 13, 72.	6.8	43
42	Hemodynamic effects of β1―and β2â€adrenoceptor stimulation in conscious Zucker diabetic fatty rats (1155.7). FASEB Journal, 2014, 28, 1155.7.	0.5	0
43	Increased αâ€∎drenoceptor sensitivity in Zucker diabetic fatty rats during anesthesia (1155.6). FASEB Journal, 2014, 28, .	0.5	0
44	Exacerbated αâ€adrenoceptorâ€mediated vasoconstriction in obese rats during anesthesia (681.8). FASEB Journal, 2014, 28, 681.8.	0.5	0
45	Impaired cardiac parasympathetic control in healthy young people with type 1 diabetes (LB658). FASEB Journal, 2014, 28, LB658.	0.5	0
46	Early Myocardial Dysfunction is Not Caused by Mitochondrial Abnormalities in a Rat Model of Peritonitis. Journal of Surgical Research, 2012, 176, 178-184.	1.6	12
47	Effect of bupivacaine on sevoflurane-induced preconditioning in isolated rat hearts. European Journal of Pharmacology, 2010, 647, 132-138.	3.5	12
48	Reactive Oxygen Species–Induced Stimulation of 5′AMP-Activated Protein Kinase Mediates Sevoflurane-Induced Cardioprotection. Circulation, 2009, 120, S10-5.	1.6	79
49	Myofilament dysfunction in cardiac disease from mice to men. Journal of Muscle Research and Cell Motility, 2008, 29, 189-201.	2.0	67
50	Force-frequency relation and myofilament Ca2+ sensitivity. , 2008, , 39-41.		0
51	Frequency-dependent myofilament Ca2+desensitization in failing rat myocardium. Journal of Physiology, 2007, 582, 695-709.	2.9	58
52	Right ventricular hypertrophy causes impairment of left ventricular diastolic function in the rat. Basic Research in Cardiology, 2007, 102, 19-27.	5.9	44
53	Cross-Talk Between Cardiac Muscle and Coronary Vasculature. Physiological Reviews, 2006, 86, 1263-1308.	28.8	226
54	Functional effects of protein kinase C-mediated myofilament phosphorylation in human myocardium. Cardiovascular Research, 2006, 69, 876-887.	3.8	71

#	Article	IF	CITATIONS
55	Endocardial endothelium modulates subendocardial pHi of rabbit papillary muscles: role of transendothelial HCO3? transport. Cardiovascular Research, 2004, 63, 700-708.	3.8	5
56	Subendocardial and subepicardial pressure–flow relations in the rat heart in diastolic and systolic arrest. Journal of Biomechanics, 2004, 37, 697-707.	2.1	3
57	Emotional and footshock stimuli induce differential long-lasting behavioural effects in rats; involvement of opioids. Brain Research, 1998, 799, 6-15.	2.2	68