Melissa Call

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1285481/publications.pdf

Version: 2024-02-01

516710 434195 1,165 34 16 31 citations h-index g-index papers 36 36 36 1983 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Insights Into Drug Repurposing, as Well as Specificity and Compound Properties of Piperidine-Based SARS-CoV-2 PLpro Inhibitors. Frontiers in Chemistry, 2022, 10, 861209.	3.6	11
2	De novo-designed transmembrane domains tune engineered receptor functions. ELife, 2022, 11, .	6.0	19
3	Hello Possums!. Immunology and Cell Biology, 2021, 99, 674-676.	2.3	O
4	Human and viral membrane–associated E3 ubiquitin ligases MARCH1 and MIR2 recognize different features of CD86 to downregulate surface expression. Journal of Biological Chemistry, 2021, 297, 100900.	3.4	8
5	The Influence of Chimeric Antigen Receptor Structural Domains on Clinical Outcomes and Associated Toxicities. Cancers, 2021, 13, 38.	3.7	17
6	T Cell Activation Machinery: Form and Function in Natural and Engineered Immune Receptors. International Journal of Molecular Sciences, 2020, 21, 7424.	4.1	9
7	Experimentally Guided Computational Methods Yield Highly Accurate Insights into Transmembrane Interactions within the T Cell Receptor Complex. Journal of Physical Chemistry B, 2020, 124, 10303-10310.	2.6	1
8	Novel drivers and modifiers of MPL-dependent oncogenic transformation identified by deep mutational scanning. Blood, 2020, 135, 287-292.	1.4	34
9	MARCH5 requires MTCH2 to coordinate proteasomal turnover of the MCL1:NOXA complex. Cell Death and Differentiation, 2020, 27, 2484-2499.	11.2	33
10	The serial millisecond crystallography instrument at the Australian Synchrotron incorporating the "Lipidico―injector. Review of Scientific Instruments, 2019, 90, 085110.	1.3	20
11	THE MECHANISM OF ONCOGENIC MUTATIONS IN THE JUXTAMEMBRANE AND TRANSMEMBRANE REGION OF IL7RA AND TPOR/MPL. Experimental Hematology, 2019, 76, S59.	0.4	0
12	Protein-Eye View of the in Meso Crystallization Mechanism. Langmuir, 2019, 35, 8344-8356.	3.5	9
13	A serine in the first transmembrane domain of the human E3 ubiquitin ligase MARCH9 is critical for down-regulation of its protein substrates. Journal of Biological Chemistry, 2019, 294, 2470-2485.	3.4	10
14	Structural Conservation and Effects of Alterations in T Cell Receptor Transmembrane Interfaces. Biophysical Journal, 2018, 114, 1030-1035.	0.5	8
15	Transferrin receptor 1 is a reticulocyte-specific receptor for $\langle i \rangle$ Plasmodium vivax $\langle i \rangle$. Science, 2018, 359, 48-55.	12.6	158
16	Lipidic Cubic Phase-Induced Membrane Protein Crystallization: Interplay Between Lipid Molecular Structure, Mesophase Structure and Properties, and Crystallogenesis. Crystal Growth and Design, 2017, 17, 5667-5674.	3.0	16
17	Conversion of Bim-BH3 from Activator to Inhibitor of Bak through Structure-Based Design. Molecular Cell, 2017, 68, 659-672.e9.	9.7	57
18	Transmembrane features governing Fc receptor CD16A assembly with CD16A signaling adaptor molecules. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5645-E5654.	7.1	32

#	Article	IF	CITATIONS
19	Progress and prospects for structural studies of transmembrane interactions in single-spanning receptors. Current Opinion in Structural Biology, 2016, 39, 115-123.	5.7	22
20	A conserved $\hat{l}\pm\hat{l}^2$ transmembrane interface forms the core of a compact T-cell receptorâ \in "CD3 structure within the membrane. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6649-E6658.	7.1	40
21	Exploring the <i>in meso</i> crystallization mechanism by characterizing the lipid mesophase microenvironment during the growth of single transmembrane î±-helical peptide crystals. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150125.	3.4	14
22	Crystal Structure of the Glycophorin A Transmembrane Dimer in Lipidic Cubic Phase. Journal of the American Chemical Society, 2015, 137, 15676-15679.	13.7	49
23	Characterization of Inhibitors and Monoclonal Antibodies That Modulate the Interaction between Plasmodium falciparum Adhesin PfRh4 with Its Erythrocyte Receptor Complement Receptor 1. Journal of Biological Chemistry, 2015, 290, 25307-25321.	3.4	12
24	Transmembrane Complexes of DAP12 Crystallized in Lipid Membranes Provide Insights into Control of Oligomerization in Immunoreceptor Assembly. Cell Reports, 2015, 11, 1184-1192.	6.4	20
25	Structure of the Chicken CD3ϵδJγ Heterodimer and Its Assembly with the αβT Cell Receptor. Journal of Biological Chemistry, 2014, 289, 8240-8251.	3.4	13
26	Peptide Loading of MHC. , 2013, , 687-696.		0
27	Targeting of a natural killer cell receptor family by a viral immunoevasin. Nature Immunology, 2013, 14, 699-705.	14.5	41
28	Disruption of Hydrogen Bonds between Major Histocompatibility Complex Class II and the Peptide N-Terminus Is Not Sufficient to Form a Human Leukocyte Antigen-DM Receptive State of Major Histocompatibility Complex Class II. PLoS ONE, 2013, 8, e69228.	2.5	12
29	Crystal Structure of the HLA-DM–HLA-DR1 Complex Defines Mechanisms for Rapid Peptide Selection. Cell, 2012, 151, 1557-1568.	28.9	149
30	HLA-DM captures partially empty HLA-DR molecules for catalyzed removal of peptide. Nature Immunology, 2011, 12, 54-61.	14.5	89
31	Small molecule modulators of MHC class II antigen presentation: Mechanistic insights and implications for therapeutic application. Molecular Immunology, 2011, 48, 1735-1743.	2.2	15
32	Structural Biology of the T-cell Receptor: Insights into Receptor Assembly, Ligand Recognition, and Initiation of Signaling. Cold Spring Harbor Perspectives in Biology, 2010, 2, a005140-a005140.	5. 5	136
33	In Vivo Enhancement of Peptide Display by MHC Class II Molecules with Small Molecule Catalysts of Peptide Exchange. Journal of Immunology, 2009, 182, 6342-6352.	0.8	31
34	Structural alterations in peptide–MHC recognition by self-reactive T cell receptors. Current Opinion in Immunology, 2009, 21, 590-595.	5.5	77