Melissa Call

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1285481/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transferrin receptor 1 is a reticulocyte-specific receptor for <i>Plasmodium vivax</i> . Science, 2018, 359, 48-55.	12.6	158
2	Crystal Structure of the HLA-DM–HLA-DR1 Complex Defines Mechanisms for Rapid Peptide Selection. Cell, 2012, 151, 1557-1568.	28.9	149
3	Structural Biology of the T-cell Receptor: Insights into Receptor Assembly, Ligand Recognition, and Initiation of Signaling. Cold Spring Harbor Perspectives in Biology, 2010, 2, a005140-a005140.	5.5	136
4	HLA-DM captures partially empty HLA-DR molecules for catalyzed removal of peptide. Nature Immunology, 2011, 12, 54-61.	14.5	89
5	Structural alterations in peptide–MHC recognition by self-reactive T cell receptors. Current Opinion in Immunology, 2009, 21, 590-595.	5.5	77
6	Conversion of Bim-BH3 from Activator to Inhibitor of Bak through Structure-Based Design. Molecular Cell, 2017, 68, 659-672.e9.	9.7	57
7	Crystal Structure of the Glycophorin A Transmembrane Dimer in Lipidic Cubic Phase. Journal of the American Chemical Society, 2015, 137, 15676-15679.	13.7	49
8	Targeting of a natural killer cell receptor family by a viral immunoevasin. Nature Immunology, 2013, 14, 699-705.	14.5	41
9	A conserved αβ transmembrane interface forms the core of a compact T-cell receptor–CD3 structure within the membrane. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6649-E6658.	7.1	40
10	Novel drivers and modifiers of MPL-dependent oncogenic transformation identified by deep mutational scanning. Blood, 2020, 135, 287-292.	1.4	34
11	MARCH5 requires MTCH2 to coordinate proteasomal turnover of the MCL1:NOXA complex. Cell Death and Differentiation, 2020, 27, 2484-2499.	11.2	33
12	Transmembrane features governing Fc receptor CD16A assembly with CD16A signaling adaptor molecules. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5645-E5654.	7.1	32
13	In Vivo Enhancement of Peptide Display by MHC Class II Molecules with Small Molecule Catalysts of Peptide Exchange. Journal of Immunology, 2009, 182, 6342-6352.	0.8	31
14	Progress and prospects for structural studies of transmembrane interactions in single-spanning receptors. Current Opinion in Structural Biology, 2016, 39, 115-123.	5.7	22
15	Transmembrane Complexes of DAP12 Crystallized in Lipid Membranes Provide Insights into Control of Oligomerization in Immunoreceptor Assembly. Cell Reports, 2015, 11, 1184-1192.	6.4	20
16	The serial millisecond crystallography instrument at the Australian Synchrotron incorporating the "Lipidico―injector. Review of Scientific Instruments, 2019, 90, 085110.	1.3	20
17	De novo-designed transmembrane domains tune engineered receptor functions. ELife, 2022, 11, .	6.0	19
18	The Influence of Chimeric Antigen Receptor Structural Domains on Clinical Outcomes and Associated Toxicities. Cancers, 2021, 13, 38.	3.7	17

MELISSA CALL

#	Article	IF	CITATIONS
19	Lipidic Cubic Phase-Induced Membrane Protein Crystallization: Interplay Between Lipid Molecular Structure, Mesophase Structure and Properties, and Crystallogenesis. Crystal Growth and Design, 2017, 17, 5667-5674.	3.0	16
20	Small molecule modulators of MHC class II antigen presentation: Mechanistic insights and implications for therapeutic application. Molecular Immunology, 2011, 48, 1735-1743.	2.2	15
21	Exploring the <i>in meso</i> crystallization mechanism by characterizing the lipid mesophase microenvironment during the growth of single transmembrane α-helical peptide crystals. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150125	3.4	14
22	Structure of the Chicken CD3Ϊμἷ/Ĵ³ Heterodimer and Its Assembly with the αβT Cell Receptor. Journal of Biological Chemistry, 2014, 289, 8240-8251.	3.4	13
23	Disruption of Hydrogen Bonds between Major Histocompatibility Complex Class II and the Peptide N-Terminus Is Not Sufficient to Form a Human Leukocyte Antigen-DM Receptive State of Major Histocompatibility Complex Class II. PLoS ONE, 2013, 8, e69228.	2.5	12
24	Characterization of Inhibitors and Monoclonal Antibodies That Modulate the Interaction between Plasmodium falciparum Adhesin PfRh4 with Its Erythrocyte Receptor Complement Receptor 1. Journal of Biological Chemistry, 2015, 290, 25307-25321.	3.4	12
25	Insights Into Drug Repurposing, as Well as Specificity and Compound Properties of Piperidine-Based SARS-CoV-2 PLpro Inhibitors. Frontiers in Chemistry, 2022, 10, 861209.	3.6	11
26	A serine in the first transmembrane domain of the human E3 ubiquitin ligase MARCH9 is critical for down-regulation of its protein substrates. Journal of Biological Chemistry, 2019, 294, 2470-2485.	3.4	10
27	Protein-Eye View of the in Meso Crystallization Mechanism. Langmuir, 2019, 35, 8344-8356.	3.5	9
28	T Cell Activation Machinery: Form and Function in Natural and Engineered Immune Receptors. International Journal of Molecular Sciences, 2020, 21, 7424.	4.1	9
29	Structural Conservation and Effects of Alterations in T Cell Receptor Transmembrane Interfaces. Biophysical Journal, 2018, 114, 1030-1035.	0.5	8
30	Human and viral membrane–associated E3 ubiquitin ligases MARCH1 and MIR2 recognize different features of CD86 to downregulate surface expression. Journal of Biological Chemistry, 2021, 297, 100900.	3.4	8
31	Experimentally Guided Computational Methods Yield Highly Accurate Insights into Transmembrane Interactions within the T Cell Receptor Complex. Journal of Physical Chemistry B, 2020, 124, 10303-10310.	2.6	1
32	Peptide Loading of MHC. , 2013, , 687-696.		0
33	THE MECHANISM OF ONCOGENIC MUTATIONS IN THE JUXTAMEMBRANE AND TRANSMEMBRANE REGION OF IL7RA AND TPOR/MPL. Experimental Hematology, 2019, 76, S59.	0.4	0
34	Hello Possums!. Immunology and Cell Biology, 2021, 99, 674-676.	2.3	0