
MichaÅ, Wasilczuk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1285174/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Wear measurements of self-lubricating bearing materials in small oscillatory movement. Wear, 2007, 263, 458-462.	3.1	39
2	Application of the fluid–structure interaction technique for the analysis of hydrodynamic lubrication problems. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2013, 227, 888-897.	1.8	28
3	Effect of manufacturing errors of the pad sliding surface on the performance of the hydrodynamic thrust bearing. Tribology International, 2019, 134, 211-220.	5.9	23
4	Modeling lubricant flow between thrust-bearing pads. Tribology International, 2008, 41, 908-913.	5.9	22
5	Effect of presence of lifting pocket on the THD performance of a large tilting-pad thrust bearing. Friction, 2015, 3, 266-274.	6.4	21
6	Evaluation of apparent Young׳s modulus of the composite polymer layers used as sliding surfaces in hydrodynamic thrust bearings. Tribology International, 2016, 97, 244-252.	5.9	21
7	Simulation of large thrust-bearing performance at transient states, warm and cold start-up. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2014, 228, 96-103.	1.8	18
8	Friction and Lubrication of Large Tilting-Pad Thrust Bearings. Lubricants, 2015, 3, 164-180.	2.9	16
9	Combined thrust radial bearing of a submarine main shaft – Design and analysis of failure. Engineering Failure Analysis, 2020, 115, 104651.	4.0	13
10	Centrally Pivoted Tilting Pad Thrust Bearing with Carbon-Based Coated Collar—Experimental Results of Low- and Medium-Speed Operation. Tribology Transactions, 2015, 58, 882-893.	2.0	9
11	On the Possibilities of Decreasing Power Loss in Large Tilting Pad Thrust Bearings. ISRN Tribology, 2013, 2013, 1-9.	0.4	7
12	Field Tests on Hydrodynamic and Hybrid Operation of a Bidirectional Thrust Bearing of a Pump-Turbine. Lubricants, 2017, 5, 48.	2.9	6
13	Influence of hydrostatic pump operation period on performance of a thrust bearing of a 125 MW pump-turbine. Mecanique Et Industries, 2004, 5, 3-9.	0.2	5
14	Improving performance of large thrust bearings through modeling and experimentation. Mechanics and Industry, 2013, 14, 267-274.	1.3	5
15	Improvement of Thrust Bearing Calculation Considering the Convectional Heating within the Space between the Pads. Lubricants, 2018, 6, 22.	2.9	5
16	A Method of Friction Torque Measurement for a Hydrodynamic Thrust Bearing. Journal of Tribology, 1995, 117, 674-678.	1.9	4
17	Large Hydrodynamic Thrust Bearings and Their Application in Hydrogenerators. , 2013, , 1912-1926.		4
18	THE INFLUENCE OF HOUSING ARRANGEMENT AND INTERFERENCE ON PRELOAD AND THEORETICAL LIFETIME OF A SYSTEM OF TAPER ROLLER BEARINGS OF A HIGH SPEED SHAFT OF A WIND TURBINE GEARBOX. Tribologia, 2017, , 21-26.	0.2	2

MichaÅ, Wasilczuk

#	Article	IF	CITATIONS
19	PROSPECTS OF DECREASING POWER LOSSES IN A HYDROSTATIC THRUST BEARING. Tribologia, 2017, , 91-96.	0.2	1
20	THE USE OF PLATE SPRINGS FOR PRELOADING OF A SYSTEM OF TAPERED ROLLER BEARINGS OF A WIND TURBINE GEARBOX. Tribologia, 2018, 281, 13-18.	0.2	1
21	Special Issue on Sliding Contact Bearings. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2014, 228, 915-915.	1.8	0
22	EXPERIMENTAL EVALUATION OF DLC/STEEL SLIDING CONTACTS' OPERATIONAL ENVELOPE. Tribologia, 2018, 281, 41-46.	0.2	0
23	HYDROSTATIC THRUST BEARING WITH REDUCED POWER LOSSES. Tribologia, 2018, 281, 123-131.	0.2	0