
Toly Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1285139/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A type-II fuzzy collaborative forecasting approach for productivity forecasting under an uncertainty environment. Journal of Ambient Intelligence and Humanized Computing, 2021, 12, 2751-2763.	3.3	8
2	Fuzzy collaborative intelligence fuzzy analytic hierarchy process approach for selecting suitable three-dimensional printers. Soft Computing, 2021, 25, 4121-4134.	2.1	8
3	An interval fuzzy number-based fuzzy collaborative forecasting approach for DRAM yield forecasting. Complex & Intelligent Systems, 2021, 7, 111-122.	4.0	5
4	Analyzing the Impact of Vaccine Availability on Alternative Supplier Selection Amid the COVID-19 Pandemic: A cFGM-FTOPSIS-FWI Approach. Healthcare (Switzerland), 2021, 9, 71.	1.0	39
5	A diversified AHP-tree approach for multiple-criteria supplier selection. Computational Management Science, 2021, 18, 431-453.	0.8	8
6	Interval fuzzy number-based approach for modeling an uncertain fuzzy yield learning process. Journal of Ambient Intelligence and Humanized Computing, 2020, 11, 1213-1223.	3.3	11
7	Smart and automation technologies for ensuring the long-term operation of a factory amid the COVID-19 pandemic: an evolving fuzzy assessment approach. International Journal of Advanced Manufacturing Technology, 2020, 111, 3545-3558.	1.5	46
8	Assessing the Robustness of a Factory Amid the COVID-19 Pandemic: A Fuzzy Collaborative Intelligence Approach. Healthcare (Switzerland), 2020, 8, 481.	1.0	15
9	A fuzzy ubiquitous traveler clustering and hotel recommendation system by differentiating travelers' decision-making behaviors. Applied Soft Computing Journal, 2020, 96, 106585.	4.1	14
10	Enhancing the efficiency and accuracy of existing FAHP decision-making methods. EURO Journal on Decision Processes, 2020, 8, 177-204.	1.8	11
11	A Piecewise Linear FGM Approach for Efficient and Accurate FAHP Analysis: Smart Backpack Design as an Example. Mathematics, 2020, 8, 1319.	1.1	22
12	Assessing the suitability of smart technology applications for e-health using a judgment-decomposition analytic hierarchy process approach. Health and Technology, 2020, 10, 767-776.	2.1	9
13	A multibelief analytic hierarchy process and nonlinear programming approach for diversifying product designs: Smart backpack design as an example. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2020, 234, 1044-1056.	1.5	24
14	Modeling an Uncertain Productivity Learning Process Using an Interval Fuzzy Methodology. Mathematics, 2020, 8, 998.	1.1	13
15	An evolving fuzzy planning mechanism for a ubiquitous manufacturing system. International Journal of Advanced Manufacturing Technology, 2020, 108, 2337-2347.	1.5	6
16	Assessing factors critical to smart technology applications to mobile health careÂâ~'Âthe fgm-fahp approach. Health Policy and Technology, 2020, 9, 194-203.	1.3	32
17	Ambient intelligence and ergonomics in Asia. Journal of Ambient Intelligence and Humanized Computing, 2019, 10, 4785-4787.	3.3	2
18	An advanced fuzzy collaborative intelligence approach for fitting the uncertain unit cost learning process. Complex & Intelligent Systems, 2019, 5, 303-313.	4.0	12

#	Article	IF	CITATIONS
19	3D printing technologies for enhancing the sustainability of an aircraft manufacturing or MRO company—a multi-expert partial consensus-FAHP analysis. International Journal of Advanced Manufacturing Technology, 2019, 105, 4171-4180.	1.5	20
20	Approximating alpha-cut operations approach for effective and efficient fuzzy analytic hierarchy process analysis. Applied Soft Computing Journal, 2019, 85, 105855.	4.1	41
21	A Collaborative and Ubiquitous System for Fabricating Dental Parts Using 3D Printing Technologies. Healthcare (Switzerland), 2019, 7, 103.	1.0	24
22	An advanced IoT system for assisting ubiquitous manufacturing with 3D printing. International Journal of Advanced Manufacturing Technology, 2019, 103, 1721-1733.	1.5	18
23	A fuzzy polynomial fitting and mathematical programming approach for enhancing the accuracy and precision of productivity forecasting. Computational and Mathematical Organization Theory, 2019, 25, 85-107.	1.5	3
24	An advanced fuzzy approach for modeling the yield improvement of making aircraft parts using 3D printing. International Journal of Advanced Manufacturing Technology, 2019, 105, 4085-4095.	1.5	8
25	Advanced 3D printing technologies for the aircraft industry: a fuzzy systematic approach for assessing the critical factors. International Journal of Advanced Manufacturing Technology, 2019, 105, 4059-4069.	1.5	79
26	Fuzzy and nonlinear programming approach for optimizing the performance of ubiquitous hotel recommendation. Journal of Ambient Intelligence and Humanized Computing, 2018, 9, 275-284.	3.3	27
27	Application of industrial engineering concepts and techniques to ambient intelligence: a case study. Journal of Ambient Intelligence and Humanized Computing, 2018, 9, 215-223.	3.3	11
28	Fitting an uncertain productivity learning process using an artificial neural network approach. Computational and Mathematical Organization Theory, 2018, 24, 422-439.	1.5	5
29	A multi-granularity approach for estimating the sustainability of a factory simulation model: semiconductor packaging as an example. Operational Research, 2018, 18, 711-729.	1.3	4
30	Solving data preprocessing problems in existing location-aware systems. Journal of Ambient Intelligence and Humanized Computing, 2018, 9, 253-259.	3.3	13
31	Optimal operating room scheduling for normal and unexpected events in a smart hospital. Operational Research, 2018, 18, 579-602.	1.3	19
32	INLP-BPN approach for recommending hotels to a mobile traveler. Journal of Ambient Intelligence and Humanized Computing, 2018, 9, 329-336.	3.3	5
33	Integer nonlinear programming and optimized weighted-average approach for mobile hotel recommendation by considering travelers' unknown preferences. Operational Research, 2018, 18, 625-643.	1.3	10
34	Smart technologies for assisting the life quality of persons in a mobile environment: a review. Journal of Ambient Intelligence and Humanized Computing, 2018, 9, 319-327.	3.3	34
35	Optimal multiple-period scheduling and sequencing of operating room and intensive care unit. Operational Research, 2018, 18, 645-670.	1.3	9
36	An innovative fuzzy and artificial neural network approach for forecasting yield under an uncertain learning environment. Journal of Ambient Intelligence and Humanized Computing, 2018, 9, 1013-1025.	3.3	13

#	Article	IF	CITATIONS
37	Optimizing performance of rigid polyurethane foam using FGP models. Journal of Ambient Intelligence and Humanized Computing, 2018, 9, 351-366.	3.3	5
38	A fuzzy collaborative intelligence approach for estimating future yield with DRAM as an example. Operational Research, 2018, 18, 671-688.	1.3	1
39	Advanced ambient intelligence system informatics. Journal of Ambient Intelligence and Humanized Computing, 2018, 9, 211-213.	3.3	3
40	A new cloud computing method for establishing asymmetric cycle time intervals in a wafer fabrication factory. Journal of Intelligent Manufacturing, 2017, 28, 1095-1107.	4.4	17
41	Estimating the simulation workload for factory simulation as a cloud service. Journal of Intelligent Manufacturing, 2017, 28, 1139-1157.	4.4	14
42	A digital equipment identifier system. Journal of Intelligent Manufacturing, 2017, 28, 1159-1169.	4.4	5
43	Predictive distant operation and virtual control of computer numerical control machines. Journal of Intelligent Manufacturing, 2017, 28, 1061-1077.	4.4	11
44	New fuzzy method for improving the precision of productivity predictions for a factory. Neural Computing and Applications, 2017, 28, 3507-3520.	3.2	9
45	A nonlinearly normalized back propagation network and cloud computing approach for determining cycle time allowance during wafer fabrication. Robotics and Computer-Integrated Manufacturing, 2017, 45, 144-156.	6.1	15
46	Ubiquitous manufacturing: Current practices, challenges, and opportunities. Robotics and Computer-Integrated Manufacturing, 2017, 45, 126-132.	6.1	104
47	A fuzzy collaboration system for ubiquitous loading/unloading space recommendation in the logistics industry. Robotics and Computer-Integrated Manufacturing, 2017, 45, 86-98.	6.1	10
48	Ubiquitous Hotel Recommendation Using a Fuzzy-Weighted-Average and Backpropagation-Network Approach. International Journal of Intelligent Systems, 2017, 32, 316-341.	3.3	11
49	Feasibility Evaluation and Optimization of a Smart Manufacturing System Based on 3D Printing: A Review. International Journal of Intelligent Systems, 2017, 32, 394-413.	3.3	81
50	Competitive and Sustainable Manufacturing in the Age of Globalization. Sustainability, 2017, 9, 26.	1.6	15
51	Evaluating sustainable advantages in productivity with a systematic procedure. International Journal of Advanced Manufacturing Technology, 2016, 87, 1435-1442.	1.5	8
52	Ambient intelligence and ergonomics in Asia. Journal of Ambient Intelligence and Humanized Computing, 2016, 7, 761-762.	3.3	0
53	Embedding a back propagation network into fuzzy c-means for estimating job cycle time: wafer fabrication as an example. Journal of Ambient Intelligence and Humanized Computing, 2016, 7, 789-800.	3.3	11
54	Ubiquitous Multicriteria Clinic Recommendation System. Journal of Medical Systems, 2016, 40, 113.	2.2	27

#	Article	IF	CITATIONS
55	Creating a Just-in-time Location-aware Service Using Fuzzy Logic. Applied Spatial Analysis and Policy, 2016, 9, 287-307.	1.0	12
56	Fuzzy neural network approach to optimizing process performance by using multiple responses. Journal of Ambient Intelligence and Humanized Computing, 2016, 7, 801-816.	3.3	24
57	Asymmetric cycle time bounding in semiconductor manufacturing: an efficient and effective back-propagation-network-based method. Operational Research, 2016, 16, 445-468.	1.3	3
58	A fuzzy integer-nonlinear programming approach for creating a flexible just-in-time location-aware service in a mobile environment. Applied Soft Computing Journal, 2016, 38, 805-816.	4.1	9
59	Estimating simulation workload in cloud manufacturing using a classifying artificial neural network ensemble approach. Robotics and Computer-Integrated Manufacturing, 2016, 38, 42-51.	6.1	42
60	Fuzzy Collaborative Intelligence and Systems. International Journal of Intelligent Systems, 2015, 30, 617-619.	3.3	8
61	An Efficient and Effective Fuzzy Collaborative Intelligence Approach for Cycle Time Estimation in Wafer Fabrication. International Journal of Intelligent Systems, 2015, 30, 620-650.	3.3	18
62	An Improved Fuzzy Collaborative System for Predicting the Unit Cost of a DRAM Product. International Journal of Intelligent Systems, 2015, 30, 707-730.	3.3	13
63	Enhancing the performance of a ubiquitous location-aware service system using a fuzzy collaborative problem solving strategy. Computers and Industrial Engineering, 2015, 87, 296-307.	3.4	12
64	Ambient intelligence and ergonomics in Asia. Journal of Ambient Intelligence and Humanized Computing, 2015, 6, 1-2.	3.3	12
65	A PCA-BPN approach for estimating simulation workload in cloud manufacturing. , 2015, , .		1
66	A fuzzy back-propagation network approach for planning actions to shorten the cycle time of a job in dynamic random access memory manufacturing. Neural Computing and Applications, 2015, 26, 1813-1825.	3.2	8
67	CART–BPN approach for estimating cycle time in wafer fabrication. Journal of Ambient Intelligence and Humanized Computing, 2015, 6, 57-67.	3.3	27
68	Combining statistical analysis and artificial neural network for classifying jobs and estimating the cycle times in wafer fabrication. Neural Computing and Applications, 2015, 26, 223-236.	3.2	8
69	Strengthening the Competitiveness and Sustainability of a Semiconductor Manufacturer with Cloud Manufacturing. Sustainability, 2014, 6, 251-266.	1.6	53
70	Enhancing the Sustainability of a Location-Aware Service through Optimization. Sustainability, 2014, 6, 9441-9455.	1.6	17
71	A Fuzzy Parallel Processing Scheme for Enhancing the Effectiveness of a Dynamic Just-in-time Location-aware Service System. Entropy, 2014, 16, 2001-2022.	1.1	13
72	The Symmetric-Partitioning and Incremental-Relearning Classification and Back-Propagation-Network Tree Approach for Cycle Time Estimation in Wafer Fabrication. Symmetry, 2014, 6, 409-426.	1.1	4

#	Article	IF	CITATIONS
73	An Agent-Based Fuzzy Collaborative Intelligence Approach for Precise and Accurate Semiconductor Yield Forecasting. IEEE Transactions on Fuzzy Systems, 2014, 22, 201-211.	6.5	40
74	Forecasting the productivity of a virtual enterprise by agent-based fuzzy collaborative intelligence—With Facebook as an example. Applied Soft Computing Journal, 2014, 24, 511-521.	4.1	16
75	Advanced dispatching rules for large-scale manufacturing systems. International Journal of Advanced Manufacturing Technology, 2013, 67, 1-3.	1.5	33
76	A fuzzy rule for job dispatching in a wafer fabrication factory—a simulation study. International Journal of Advanced Manufacturing Technology, 2013, 67, 47-58.	1.5	3
77	A fuzzy-neural approach for optimizing the performance of job dispatching in a wafer fabrication factory. International Journal of Advanced Manufacturing Technology, 2013, 67, 189-202.	1.5	2
78	A fuzzy-neural approach for supporting three-objective job scheduling in a wafer fabrication factory. Neural Computing and Applications, 2013, 23, 353-367.	3.2	6
79	A flexible way of modeling the long-term cost competitiveness of a semiconductor product. Robotics and Computer-Integrated Manufacturing, 2013, 29, 31-40.	6.1	20
80	A collaborative and artificial intelligence approach for semiconductor cost forecasting. Computers and Industrial Engineering, 2013, 66, 476-484.	3.4	13
81	A slack-diversifying nonlinear fluctuation smoothing rule for job dispatching in a wafer fabrication factory. Robotics and Computer-Integrated Manufacturing, 2013, 29, 41-47.	6.1	23
82	Forecasting the yield of a semiconductor product with a collaborative intelligence approach. Applied Soft Computing Journal, 2013, 13, 1552-1560.	4.1	17
83	An effective fuzzy collaborative forecasting approach for predicting the job cycle time in wafer fabrication. Computers and Industrial Engineering, 2013, 66, 834-848.	3.4	42
84	A Fuzzy Collaborative Sensor Network for Semiconductor Manufacturing Cycle Time Forecasting. International Journal of Distributed Sensor Networks, 2013, 9, 257276.	1.3	2
85	Precise and Accurate Job Cycle Time Forecasting in a Wafer Fabrication Factory with a Fuzzy Data Mining Approach. Mathematical Problems in Engineering, 2013, 2013, 1-14.	0.6	7
86	Enhancing the Long-Term Yield Competitiveness of a Semiconductor Manufacturing Factory Using a Multiobjective Fuzzy Nonlinear Programming Approach. Mathematical Problems in Engineering, 2013, 2013, 1-11.	0.6	2
87	A Fuzzy-Neural Ensemble and Geometric Rule Fusion Approach for Scheduling a Wafer Fabrication Factory. Mathematical Problems in Engineering, 2013, 2013, 1-14.	0.6	7
88	Internal Due Date Assignment in a Wafer Fabrication Factory by an Effective Fuzzy-Neural Approach. Journal of Applied Mathematics, 2013, 2013, 1-13.	0.4	0
89	Semiconductor Yield Forecasting Using Quadratic-Programming-Based Fuzzy Collaborative Intelligence Approach. Mathematical Problems in Engineering, 2013, 2013, 1-7.	0.6	3
90	A Novel Fuzzy-Neural Slack-Diversifying Rule Based on Soft Computing Applications for Job Dispatching in a Wafer Fabrication Factory. Mathematical Problems in Engineering, 2013, 2013, 1-15.	0.6	1

#	Article	IF	CITATIONS
91	A Biobjective Fuzzy Integer-Nonlinear Programming Approach for Creating an Intelligent Location-Aware Service. Journal of Applied Mathematics, 2013, 2013, 1-11.	0.4	6
92	Applications of Fuzzy Ensemble Approaches in Modeling, Forecasting, and Control. Mathematical Problems in Engineering, 2013, 2013, 1-2.	0.6	0
93	A Fuzzy Rule for Improving the Performance of Multiobjective Job Dispatching in a Wafer Fabrication Factory. Journal of Applied Mathematics, 2013, 2013, 1-18.	0.4	3
94	A Fuzzy Nonlinear Programming Approach for Optimizing the Performance of a Four-Objective Fluctuation Smoothing Rule in a Wafer Fabrication Factory. Journal of Applied Mathematics, 2013, 2013, 1-15.	0.4	9
95	An Iterative Procedure for Optimizing the Performance of the Fuzzy-Neural Job Cycle Time Estimation Approach in a Wafer Fabrication Factory. Mathematical Problems in Engineering, 2013, 2013, 1-15.	0.6	14
96	A post-classifying fuzzy-neural and data-fusion rule for job scheduling in a wafer fab - a simulation study. International Journal of Manufacturing Research, 2013, 8, 150.	0.1	4
97	A Systematic Cycle Time Reduction Procedure for Enhancing the Competitiveness and Sustainability of a Semiconductor Manufacturer. Sustainability, 2013, 5, 4637-4652.	1.6	16
98	A Fuzzy Collaborative Forecasting Approach for Forecasting the Productivity of a Factory. Advances in Mechanical Engineering, 2013, 5, 234571.	0.8	8
99	Enhancing Scheduling Performance for a Wafer Fabrication Factory: The Biobjective Slack-Diversifying Nonlinear Fluctuation-Smoothing Rule. Computational Intelligence and Neuroscience, 2012, 2012, 1-12.	1.1	1
100	Forecasting the Unit Cost of a Product with Some Linear Fuzzy Collaborative Forecasting Models. Algorithms, 2012, 5, 449-468.	1.2	8
101	Long-term load forecasting by a collaborative fuzzy-neural approach. International Journal of Electrical Power and Energy Systems, 2012, 43, 454-464.	3.3	60
102	An agent-based fuzzy-neural approach for precise energy consumption forecasting. , 2012, , .		0
103	A Nonlinear Programming and Artificial Neural Network Approach for Optimizing the Performance of a Job Dispatching Rule in a Wafer Fabrication Factory. Applied Computational Intelligence and Soft Computing, 2012, 2012, 1-9.	1.6	1
104	A PCA-FBPN Approach for Job Cycle Time Estimation in a Wafer Fabrication Factory. International Journal of Fuzzy System Applications, 2012, 2, 50-67.	0.5	10
105	Applied Neural Intelligence to Modeling, Control, and Management of Human Systems and Environments. Applied Computational Intelligence and Soft Computing, 2012, 2012, 1-2.	1.6	0
106	An Agent-Based Fuzzy Collaborative Intelligence Approach for Predicting the Price of a Dynamic Random Access Memory (DRAM) Product. Algorithms, 2012, 5, 304-317.	1.2	2
107	Intelligent scheduling approaches for a wafer fabrication factory. Journal of Intelligent Manufacturing, 2012, 23, 897-911.	4.4	13
108	A fuzzy-neural approach for global CO2 concentration forecasting. Intelligent Data Analysis, 2011, 15, 763-777.	0.4	20

#	Article	IF	CITATIONS
109	A hybrid fuzzy and neural approach for forecasting the book-to-bill ratio in the semiconductor manufacturing industry. International Journal of Advanced Manufacturing Technology, 2011, 52, 377-389.	1.5	14
110	Job cycle time estimation in a wafer fabrication factory with a bi-directional classifying fuzzy-neural approach. International Journal of Advanced Manufacturing Technology, 2011, 56, 1007-1018.	1.5	21
111	A self-adaptive agent-based fuzzy-neural scheduling system for a wafer fabrication factory. Expert Systems With Applications, 2011, 38, 7158-7168.	4.4	16
112	Applying a Fuzzy and Neural Approach for Forecasting the Foreign Exchange Rate. International Journal of Fuzzy System Applications, 2011, 1, 36-48.	0.5	22
113	A bi-criteria nonlinear fluctuation smoothing rule incorporating the SOM–FBPN remaining cycle time estimator for scheduling a wafer fab—a simulation study. International Journal of Advanced Manufacturing Technology, 2010, 49, 709-721.	1.5	19
114	Incorporating the FCM–BPN approach with nonlinear programming for internal due date assignment in a wafer fabrication plant. Robotics and Computer-Integrated Manufacturing, 2010, 26, 83-91.	6.1	54
115	An optimized tailored nonlinear fluctuation smoothing rule for scheduling a semiconductor manufacturing factory. Computers and Industrial Engineering, 2010, 58, 317-325.	3.4	17
116	A FUZZY-NEURAL FLUCTUATION SMOOTHING RULE FOR SCHEDULING JOBS WITH VARIOUS PRIORITIES IN A SEMICONDUCTOR MANUFACTURING FACTORY. International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems, 2009, 17, 397-417.	0.9	16
117	A FNP approach for evaluating and enhancing the long-term competitiveness of a semiconductor fabrication factory through yield learning modeling. International Journal of Advanced Manufacturing Technology, 2009, 40, 993-1003.	1.5	15
118	Lot cycle time prediction in a ramping-up semiconductor manufacturing factory with a SOM–FBPN-ensemble approach with multiple buckets and partial normalization. International Journal of Advanced Manufacturing Technology, 2009, 42, 1206-1216.	1.5	65
119	A nonlinear scheduling rule incorporating fuzzy-neural remaining cycle time estimator for scheduling a semiconductor manufacturing factory—a simulation study. International Journal of Advanced Manufacturing Technology, 2009, 45, 110-121.	1.5	29
120	A fuzzy set approach for evaluating and enhancing the mid-term competitiveness of a semiconductor factory. Fuzzy Sets and Systems, 2009, 160, 569-585.	1.6	19
121	A fuzzy back propagation network ensemble with example classification for lot output time prediction in a wafer fab. Applied Soft Computing Journal, 2009, 9, 658-666.	4.1	27
122	Fuzzy-neural approaches with example post-classification for estimating job cycle time in a wafer fab. Applied Soft Computing Journal, 2009, 9, 1225-1231.	4.1	31
123	A fuzzyâ€neural approach for output projection in a semiconductor fabrication factory. Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers,Series A/Chung-kuo Kung Ch'eng Hsuch K'an, 2009, 32, 285-291.	0.6	3
124	A hybrid neural network and selective allowance approach for internal due date assignment in a wafer fabrication plant. International Journal of Advanced Manufacturing Technology, 2008, 36, 570-581.	1.5	30
125	A SOM-FBPN-ensemble approach with error feedback to adjust classification for wafer-lot completion time prediction. International Journal of Advanced Manufacturing Technology, 2008, 37, 782-792.	1.5	42
126	A fuzzy-neural approach for estimating the monthly output of a semiconductor manufacturing factory. International Journal of Advanced Manufacturing Technology, 2008, 39, 589-598.	1.5	14

#	Article	IF	CITATIONS
127	An intelligent mechanism for lot output time prediction and achievability evaluation in a wafer fab. Computers and Industrial Engineering, 2008, 54, 77-94.	3.4	23
128	A fuzzy-neural and multiple-bucket approach for estimating lot cycle time in a wafer fab with dynamic product mix. Computers and Industrial Engineering, 2008, 55, 423-438.	3.4	10
129	A hybrid fuzzy-neural approach to job completion time prediction in a semiconductor fabrication factory. Neurocomputing, 2008, 71, 3193-3201.	3.5	10
130	A FUZZY-NEURAL SYSTEM INCORPORATING UNEQUALLY IMPORTANT EXPERT OPINIONS FOR SEMICONDUCTOR YIELD FORECASTING. International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems, 2008, 16, 35-58.	0.9	97
131	A hybrid intelligent approach for output projection in a semiconductor fabrication plant. Intelligent Data Analysis, 2008, 12, 129-144.	0.4	3
132	A Fuzzy Logic Approach for Incorporating the Effects of Managerial Actions on Semiconductor Yield Learning. , 2007, , .		9
133	Predicting Wafer-Lot Output Time With a Hybrid FCM–FBPN Approach. IEEE Transactions on Systems, Man, and Cybernetics, 2007, 37, 784-793.	5.5	21
134	Evaluating the mid-term competitiveness of a product in a semiconductor fabrication factory with a systematic procedure. Computers and Industrial Engineering, 2007, 53, 499-513.	3.4	37
135	Incorporating fuzzy c-means and a back-propagation network ensemble to job completion time prediction in a semiconductor fabrication factory. Fuzzy Sets and Systems, 2007, 158, 2153-2168.	1.6	27
136	Simultaneous process mean and process tolerance determination with adjustment and compensation for precision manufacturing process. International Journal of Advanced Manufacturing Technology, 2007, 33, 1159-1172.	1.5	5
137	A hybrid look-ahead SOM-FBPN and FIR system for wafer-lot-output time prediction and achievability evaluation. International Journal of Advanced Manufacturing Technology, 2007, 35, 575-586.	1.5	34
138	An intelligent hybrid system for wafer lot output time prediction. Advanced Engineering Informatics, 2007, 21, 55-65.	4.0	48
139	A Hybrid SOM-BPN Approach to Lot Output Time Prediction in a Wafer Fab. Neural Processing Letters, 2006, 24, 271-288.	2.0	53
140	A Look-Ahead Fuzzy Back Propagation Network for Lot Output Time Series Prediction in a Wafer Fab. Lecture Notes in Computer Science, 2006, , 974-982.	1.0	17
141	A fuzzy mid-term single-fab production planning model. Journal of Intelligent Manufacturing, 2003, 14, 273-285.	4.4	18
142	A fuzzy back propagation network for output time prediction in a wafer fab. Applied Soft Computing Journal, 2003, 2, 211-222.	4.1	104
143	A fuzzy set approach for event tree analysis. Fuzzy Sets and Systems, 2001, 118, 153-165.	1.6	152
144	Enhancing the accuracy and precision of forecasting the productivity of a factory: a fuzzified feedforward neural network approach. Complex & Intelligent Systems, 0, , 1.	4.0	3