
jean-luc Gatti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1285082/publications.pdf Version: 2024-02-01

IFAN-LUC CATTI

#	Article	IF	CITATIONS
1	Hosting certain facultative symbionts modulates the phenoloxidase activity and immune response of the pea aphid <i>Acyrthosiphon pisum</i> . Insect Science, 2021, 28, 1780-1799.	1.5	9
2	Proteo-Trancriptomic Analyses Reveal a Large Expansion of Metalloprotease-Like Proteins in Atypical Venom Vesicles of the Wasp Meteorus pulchricornis (Braconidae). Toxins, 2021, 13, 502.	1.5	5
3	Proteomics of purified lamellocytes from Drosophila melanogaster HopT identifies new membrane proteins and networks involved in their functions. Insect Biochemistry and Molecular Biology, 2021, 134, 103584.	1.2	3
4	Impact of Temperature on the Immune Interaction between a Parasitoid Wasp and Drosophila Host Species. Insects, 2021, 12, 647.	1.0	7
5	Amount of venom that Leptopilina species inject into Drosophila melanogaster larvae in relation to parasitic success. Journal of Insect Physiology, 2021, 135, 104320.	0.9	0
6	An increased risk of parasitism mediated by the facultative symbiont Regiella insecticola. Journal of Pest Science, 2020, 93, 737-745.	1.9	4
7	Differential side-effects of Bacillus thuringiensis bioinsecticide on non-target Drosophila flies. Scientific Reports, 2020, 10, 16241.	1.6	19
8	Aphid infestation differently affects the defences of nitrate-fed and nitrogen-fixing Medicago truncatula and alters symbiotic nitrogen fixation. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201493.	1.2	5
9	Bacillus thuringiensis Bioinsecticides Induce Developmental Defects in Non-Target Drosophila melanogaster Larvae. Insects, 2020, 11, 697.	1.0	11
10	Parasitoid wasp venom vesicles (venosomes) enter <i>Drosophila melanogaster</i> lamellocytes through a flotillin/lipid raft-dependent endocytic pathway. Virulence, 2020, 11, 1512-1521.	1.8	11
11	Functional insights from the GC-poor genomes of two aphid parasitoids, Aphidius ervi and Lysiphlebus fabarum. BMC Genomics, 2020, 21, 376.	1.2	19
12	The Venom of the Ectoparasitoid Wasp Pachycrepoideus vindemiae (Hymenoptera: Pteromalidae) Induces Apoptosis of Drosophila melanogaster Hemocytes. Insects, 2020, 11, 363.	1.0	7
13	Venom Atypical Extracellular Vesicles as Interspecies Vehicles of Virulence Factors Involved in Host Specificity: The Case of a Drosophila Parasitoid Wasp. Frontiers in Immunology, 2019, 10, 1688.	2.2	33
14	The preference–performance relationship as a means of classifying parasitoids according to their specialization degree. Evolutionary Applications, 2019, 12, 1626-1640.	1.5	29
15	Drosophila Cellular Immunity Against Parasitoid Wasps: A Complex and Time-Dependent Process. Frontiers in Physiology, 2019, 10, 603.	1.3	54
16	Variation in the Venom of Parasitic Wasps, Drift, or Selection? Insights From a Multivariate QST Analysis. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	15
17	Rapid and Differential Evolution of the Venom Composition of a Parasitoid Wasp Depending on the Host Strain. Toxins, 2019, 11, 629.	1.5	24
18	Time-course analysis of Drosophila suzukii interaction with endoparasitoid wasps evidences a delayed encapsulation response compared to D. melanogaster. PLoS ONE, 2018, 13, e0201573.	1.1	25

JEAN-LUC GATTI

#	Article	IF	CITATIONS
19	Field Monitoring of Drosophila suzukii and Associated Communities in South Eastern France as a Pre-Requisite for Classical Biological Control. Insects, 2017, 8, 124.	1.0	17
20	Biochemical characterization and comparison of aspartylglucosaminidases secreted in venom of the parasitoid wasps Asobara tabida and Leptopilina heterotoma. PLoS ONE, 2017, 12, e0181940.	1.1	13
21	Comparative venomics of Psyttalia lounsburyi and P. concolor, two olive fruit fly parasitoids: a hypothetical role for a GH1 β-glucosidase. Scientific Reports, 2016, 6, 35873.	1.6	31
22	Transgenic Rabbits Expressing Ovine PrP Are Susceptible to Scrapie. PLoS Pathogens, 2015, 11, e1005077.	2.1	12
23	Statistical analysis of the individual variability of 1D protein profiles as a tool in ecology: an application to parasitoid venom. Molecular Ecology Resources, 2015, 15, 1120-1132.	2.2	13
24	Insights into function and evolution of parasitoid wasp venoms. Current Opinion in Insect Science, 2014, 6, 52-60.	2.2	96
25	Ram seminal plasma proteome and its impact on liquid preservation of spermatozoa. Journal of Proteomics, 2014, 109, 245-260.	1.2	70
26	Identification of the main venom protein components of Aphidius ervi, a parasitoid wasp of the aphid model Acyrthosiphon pisum. BMC Genomics, 2014, 15, 342.	1.2	72
27	Development of RNAi in a Drosophila endoparasitoid wasp and demonstration of its efficiency in impairing venom protein production. Journal of Insect Physiology, 2014, 63, 56-61.	0.9	44
28	Extensive inter- and intraspecific venom variation in closely related parasites targeting the same host: The case of Leptopilina parasitoids of Drosophila. Insect Biochemistry and Molecular Biology, 2013, 43, 601-611.	1.2	100
29	A PCR-based method for estimating parasitism rates in the olive fly parasitoids Psyttalia concolor and P. lounsburyi (Hymenoptera: Braconidae). Biological Control, 2013, 67, 44-50.	1.4	10
30	Venom gland extract is not required for successful parasitism in the polydnavirus-associated endoparasitoid Hyposoter didymator (Hym. Ichneumonidae) despite the presence of numerous novel and conserved venom proteins. Insect Biochemistry and Molecular Biology, 2013, 43, 292-307.	1.2	70
31	Variability of venom components in immune suppressive parasitoid wasps: From a phylogenetic to a population approach. Journal of Insect Physiology, 2013, 59, 205-212.	0.9	59
32	The Cellular Immune Response of the Pea Aphid to Foreign Intrusion and Symbiotic Challenge. PLoS ONE, 2012, 7, e42114.	1.1	78
33	Diversity of Virus-Like Particles in Parasitoids' Venom. , 2012, , 181-192.		17
34	The contribution of proteomics to understanding epididymal maturation of mammalian spermatozoa. Systems Biology in Reproductive Medicine, 2012, 58, 197-210.	1.0	86
35	The Epididymal Transcriptome and Proteome Provide Some Insights Into New Epididymal Regulations. Journal of Andrology, 2011, 32, 651-664.	2.0	74
36	Expression, immunolocalization and processing of fertilins ADAM-1 and ADAM-2 in the boar (sus) Tj ETQq0 0 0	rgBT /Over 1.4	lock 10 Tf 50 19

36 2011, 9, 96.

jean-luc Gatti

#	Article	IF	CITATIONS
37	Purification and identification of sperm surface proteins and changes during epididymal maturation. Proteomics, 2011, 11, 1952-1964.	1.3	82
38	Identification of luminal and secreted proteins in bull epididymis. Journal of Proteomics, 2011, 74, 59-78.	1.2	110
39	Extracellular Superoxide Dismutase in Insects. Journal of Biological Chemistry, 2011, 286, 40110-40121.	1.6	73
40	The Origin of Intraspecific Variation of Virulence in an Eukaryotic Immune Suppressive Parasite. PLoS Pathogens, 2010, 6, e1001206.	2.1	49
41	In vivo imaging of in situ motility of fresh and liquid stored ram spermatozoa in the ewe genital tract. Reproduction, 2009, 138, 45-53.	1.1	55
42	Hypotonic resistance of boar spermatozoa: sperm subpopulations and relationship with epididymal maturation and fertility. Reproduction, 2009, 137, 205-213.	1.1	37
43	The adult boar testicular and epididymal transcriptomes. BMC Genomics, 2009, 10, 369.	1.2	52
44	Mammalian epididymal proteome. Molecular and Cellular Endocrinology, 2009, 306, 45-50.	1.6	98
45	One- and two-dimensional SDS–PAGE zymography with quenched fluorogenic substrates provides identification of biological fluid proteases by direct mass spectrometry. Analytical Biochemistry, 2008, 375, 382-384.	1.1	11
46	Semen from scrapie-infected rams does not transmit prion infection to transgenic mice. Reproduction, 2008, 135, 415-418.	1.1	13
47	Expression of Genes Coding for a Complete BMP Signalling System in the Reproductive Tract of Ram Biology of Reproduction, 2008, 78, 296-296.	1.2	1
48	The Adult Boar Testicular and Epididymal Transcriptome Biology of Reproduction, 2008, 78, 175-176.	1.2	0
49	Mass Spectrometry Analysis of Rainbow Trout (Oncorhynchus mykiss) Outer Arm Dynein (OAD) Components. Expression and Localization of their mRNA During the Spermatogenesis Stages Biology of Reproduction, 2008, 78, 145-145.	1.2	1
50	HE1/NPC2 status in human reproductive tract and ejaculated spermatozoa: consequence of vasectomy. Molecular Human Reproduction, 2006, 12, 461-468.	1.3	30
51	Analysis of furin ectodomain shedding in epididymal fluid of mammals: demonstration that shedding of furin occurs in vivo. Reproduction, 2006, 132, 899-908.	1.1	20
52	An Epididymal Form of Cauxin, a Carboxylesterase-Like Enzyme, Is Present and Active in Mammalian Male Reproductive Fluids1. Biology of Reproduction, 2006, 74, 439-447.	1.2	20
53	The epididymal soluble prion protein forms a high-molecular-mass complex in association with hydrophobic proteins. Biochemical Journal, 2005, 392, 211-219.	1.7	32
54	Shedding of the Germinal Angiotensin I-Converting Enzyme (gACE) Involves a Serine Protease and Is Activated by Epididymal Fluid1. Biology of Reproduction, 2005, 73, 881-890.	1.2	31

JEAN-LUC GATTI

#	Article	IF	CITATIONS
55	Identification, Proteomic Profiling, and Origin of Ram Epididymal Fluid Exosome-Like Vesicles1. Biology of Reproduction, 2005, 72, 1452-1465.	1.2	165
56	Epididymal cell secretory activities and the role of proteins in boar sperm maturation. Theriogenology, 2005, 63, 319-341.	0.9	126
57	Compartmentalization of Prion Isoforms Within the Reproductive Tract of the Ram1. Biology of Reproduction, 2004, 71, 993-1001.	1.2	65
58	Post-testicular sperm environment and fertility. Animal Reproduction Science, 2004, 82-83, 321-339.	0.5	157
59	Contribution of epididymal secretory proteins for spermatozoa maturation. Microscopy Research and Technique, 2003, 61, 7-17.	1.2	178
60	Germinal Angiotensin I-Converting Enzyme Is Totally Shed from the Rodent Sperm Membrane During Epididymal Maturation1. Biology of Reproduction, 2002, 67, 1763-1767.	1.2	36
61	Comparison, Characterization, and Identification of Proteases and Protease Inhibitors in Epididymal Fluids of Domestic Mammals. Matrix Metalloproteinases Are Major Fluid Gelatinases1. Biology of Reproduction, 2002, 66, 1219-1229.	1.2	80
62	Prion Protein Is Secreted in Soluble Forms in the Epididymal Fluid and Proteolytically Processed and Transported in Seminal Plasma1. Biology of Reproduction, 2002, 67, 393-400.	1.2	50
63	Physiological and Enzymatic Properties of the Ram Epididymal Soluble Form of Germinal Angiotensin I-Converting Enzyme1. Biology of Reproduction, 2001, 65, 1332-1339.	1.2	21
64	Biochemical Characterization of Two Ram Cauda Epididymal Maturation-Dependent Sperm Glycoproteins1. Biology of Reproduction, 2000, 62, 950-958.	1.2	23
65	A 105- to 94-Kilodalton Protein in the Epididymal Fluids of Domestic Mammals Is Angiotensin I-Converting Enzyme (ACE); Evidence That Sperm Are the Source of This ACE1. Biology of Reproduction, 1999, 60, 937-945.	1.2	60
66	Motility Update. , 1999, , 3-24.		0
67	Role of the ionic environment and internal pH on sperm activity. Human Reproduction, 1998, 13, 20-30.	0.4	131
68	Effects of extracellular environment on the osmotic signal transduction involved in activation of motility of carp spermatozoa. Reproduction, 1997, 110, 315-327.	1.1	85
69	Immunological cross-reaction between sperm dynein heavy chains from different species. Reproduction, Nutrition, Development, 1996, 36, 213-220.	1.9	3
70	Characterization and Identification of Proteins Secreted in the Various Regions of the Adult Boar Epididymis1. Biology of Reproduction, 1996, 55, 956-974.	1.2	155
71	Regulators of sperm function. Molecular Human Reproduction, 1996, 2, 219-224.	1.3	40
72	Chapter 9 Isolation of Fish Sperm Flagella. Methods in Cell Biology, 1995, 47, 47-53.	0.5	3

jean-luc Gatti

#	Article	IF	CITATIONS
73	Characterisation of boar sperm dynein heavy chains by UV vanadate dependent photocleavage. Biology of the Cell, 1994, 82, 203-210.	0.7	2
74	External ionic conditions, internal pH and motility of ram and boar spermatozoa. Reproduction, 1993, 98, 439-449.	1.1	60
75	The motile beta/IC1 subunit of sea urchin sperm outer arm dynein does not form a rigor bond Journal of Cell Biology, 1992, 118, 1177-1188.	2.3	65
76	[18] Purification and characterization of Salmo gairdneri outer arm dynein. Methods in Enzymology, 1991, 196, 201-222.	0.4	8
77	Outer-arm dynein from trout spermatozoa: Substructural organization. Cytoskeleton, 1990, 16, 266-278.	4.4	42
78	Ionic regulation of the plasma membrane potential of rainbow trout (Salmo gairdneri) spermatozoa: Role in the initiation of sperm motility. Journal of Cellular Physiology, 1990, 143, 546-554.	2.0	77
79	Trout sperm motility. The transient movement of trout sperm is related to changes in the concentration of ATP following the activation of the flagellar movement. FEBS Journal, 1987, 166, 667-671.	0.2	198
80	Rapid and quantitative assessment of trout spermatozoa motility using stroboscopy. Aquaculture, 1985, 46, 71-75.	1.7	74
81	Parasitic success and venom composition evolve upon specialization of parasitoid wasps to different host species. , 0, 1, .		1