Wei Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1285017/publications.pdf

Version: 2024-02-01

113 papers	4,975 citations	94433 37 h-index	98798 67 g-index
116	116	116	4337
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Biomimetic Recognition-Based Bioorthogonal Host–Guest Pairs for Cell Targeting and Tissue Imaging in Living Animals. CCS Chemistry, 2022, 4, 1977-1989.	7.8	26
2	Integrative genomic and transcriptomic analysis reveals immune subtypes and prognostic markers in ovarian clear cell carcinoma. British Journal of Cancer, 2022, 126, 1215-1223.	6.4	9
3	Oncological Prognosis and Fertility Outcomes of Different Surgical Extents for Malignant Ovarian Sex-Cord Stromal Tumors: A Narrative Review. Cancer Management and Research, 2022, Volume 14, 697-717.	1.9	4
4	Circular Dichroism Based Chirality Sensing with Supramolecular Host–Guest Chemistry. Angewandte Chemie - International Edition, 2022, 61, .	13.8	29
5	Selective recognition of methyl viologen by an endo-functionalized naphthobox. Chinese Chemical Letters, 2022, 33, 4896-4899.	9.0	6
6	Circular Dichroism Based Chirality Sensing with Supramolecular Host–Guest Chemistry. Angewandte Chemie, 2022, 134, .	2.0	9
7	Switchable bifunctional molecular recognition in water using a pH-responsive Endo-functionalized cavity. Nature Communications, 2022, 13, 2291.	12.8	19
8	Stabilization of Imines and Hemiaminals in Water by an Endoâ€Functionalized Container Molecule. Angewandte Chemie - International Edition, 2022, 61, .	13.8	6
9	Biomimetic Recognition and Optical Sensing of Carboxylic Acids in Water by Using a Buried Salt Bridge and the Hydrophobic Effect. Angewandte Chemie - International Edition, 2021, 60, 1929-1935.	13.8	48
10	Biomimetic Recognition and Optical Sensing of Carboxylic Acids in Water by Using a Buried Salt Bridge and the Hydrophobic Effect. Angewandte Chemie, 2021, 133, 1957-1963.	2.0	14
11	Potentiometric determination of the neurotransmitter acetylcholine with ion-selective electrodes containing oxatub[4]arenes as the ionophore. Sensors and Actuators B: Chemical, 2021, 326, 128836.	7.8	20
12	Naphthobox: a selective molecular box for planar aromatic cations. Organic Chemistry Frontiers, 2021, 8, 5265-5270.	4.5	6
13	Fluorescence detected circular dichroism (FDCD) for supramolecular host–guest complexes. Chemical Science, 2021, 12, 9420-9431.	7.4	15
14	Biomimetic Recognition of Organic Drug Molecules in Water by Amide Naphthotubes. CCS Chemistry, 2021, 3, 1078-1092.	7.8	40
15	Selective Recognition of Quaternary Ammonium Ions by Structurally Flexible Cages < sup >â € < /sup > . Chinese Journal of Chemistry, 2021, 39, 1593-1598.	4.9	5
16	Effective and Rapid Removal of Polar Organic Micropollutants from Water by Amide Naphthotubeâ€Crosslinked Polymers. Angewandte Chemie, 2021, 133, 21574-21581.	2.0	7
17	Effective and Rapid Removal of Polar Organic Micropollutants from Water by Amide Naphthotubeâ€Crosslinked Polymers. Angewandte Chemie - International Edition, 2021, 60, 21404-21411.	13.8	42
18	Biomimetic Recognition of Quinones in Water by an <i>Endo</i> â€Functionalized Cavity with Anthracene Sidewalls. Angewandte Chemie - International Edition, 2021, 60, 25981-25987.	13.8	24

#	Article	IF	CITATIONS
19	Molecular recognition and photoprotection of riboflavin in water by a biomimetic host. Chemical Communications, 2021, 57, 13724-13727.	4.1	12
20	Phytochemical and biological studies on rare and endangered plants endemic to China. Part XIV. Structurally diverse terpenoids from the twigs and needles of the endangered plant. Phytochemistry, 2020, 169, 112161.	2.9	17
21	A 2,3-dialkoxynaphthalene-based naphthocage. Chemical Communications, 2020, 56, 888-891.	4.1	11
22	Naphthotubes: Macrocyclic Hosts with a Biomimetic Cavity Feature. Accounts of Chemical Research, 2020, 53, 198-208.	15.6	148
23	A Green and Wideâ€Scope Approach for Chiroptical Sensing of Organic Molecules through Biomimetic Recognition in Water. Angewandte Chemie, 2020, 132, 24025-24032.	2.0	21
24	Adsorptive Separation of Benzene, Cyclohexene, and Cyclohexane by Amorphous Nonporous Amide Naphthotube Solids. Angewandte Chemie - International Edition, 2020, 59, 19945-19950.	13.8	60
25	Redox-Responsive Host–Guest Chemistry of a Flexible Cage with Naphthalene Walls. Journal of the American Chemical Society, 2020, 142, 3306-3310.	13.7	35
26	Adsorptive Separation of Benzene, Cyclohexene, and Cyclohexane by Amorphous Nonporous Amide Naphthotube Solids. Angewandte Chemie, 2020, 132, 20117-20122.	2.0	8
27	Stabilization of the Closedâ€Ring Isomer of Spiropyran by Amide Naphthotube in Water and Its Application in Nakedâ€Eye Detection of Toxic Paraoxon. ChemPhysChem, 2020, 21, 2249-2253.	2.1	5
28	A Green and Wideâ€Scope Approach for Chiroptical Sensing of Organic Molecules through Biomimetic Recognition in Water. Angewandte Chemie - International Edition, 2020, 59, 23817-23824.	13.8	43
29	A supramolecular system that strictly follows the binding mechanism of conformational selection. Nature Communications, 2020, 11, 2740.	12.8	42
30	Conformationally adaptive macrocycles with flipping aromatic sidewalls. Chemical Society Reviews, 2020, 49, 4176-4188.	38.1	73
31	Prismaren: Ein neues Naphtholâ€basiertes makrozyklisches Aren. Angewandte Chemie, 2020, 132, 15926-15928.	2.0	2
32	Prismarene: An Emerging Naphtholâ€Based Macrocyclic Arene. Angewandte Chemie - International Edition, 2020, 59, 15794-15796.	13.8	23
33	Mono-functionalized derivatives and revised configurational assignment of amide naphthotubes. Organic and Biomolecular Chemistry, 2020, 18, 1900-1909.	2.8	21
34	Targeting of \hat{I}^2 -Catenin Reverses Radioresistance of Cervical Cancer with the <i>PIK3CA</i> -E545K Mutation. Molecular Cancer Therapeutics, 2020, 19, 337-347.	4.1	10
35	Enantioselective Recognition of Neutral Molecules in Water by a Pair of Chiral Biomimetic Macrocyclic Receptors. CCS Chemistry, 2020, 2, 440-452.	7.8	56
36	Naphthol-Based Macrocycles. , 2020, , 975-995.		1

#	Article	IF	Citations
37	Volumetric Properties for the Binding of 1,4-Dioxane to Amide Naphthotubes in Water. Journal of Physical Chemistry B, 2020, 124, 9175-9181.	2.6	5
38	Unexpected solvent effect on the binding of positively-charged macrocycles to neutral aromatic hydrocarbons. Chemical Communications, 2019, 55, 10924-10927.	4.1	5
39	Biomimetic Synchronized Motion of Two Interacting Macrocycles in [3]Rotaxaneâ€Based Molecular Shuttles. Angewandte Chemie - International Edition, 2019, 58, 15136-15141.	13.8	32
40	Novel macrocycles – and old ones doing new tricks. Beilstein Journal of Organic Chemistry, 2019, 15, 1838-1839.	2.2	0
41	Molecular recognition of organophosphorus compounds in water and inhibition of their toxicity to acetylcholinesterase. Chemical Communications, 2019, 55, 9797-9800.	4.1	23
42	Selective Recognition of Phenazine by 2,6â€Dibutoxylnaphthaleneâ€Based Tetralactam Macrocycle. Chinese Journal of Chemistry, 2019, 37, 892-896.	4.9	20
43	2,3-Dibutoxynaphthalene-based tetralactam macrocycles for recognizing precious metal chloride complexes. Beilstein Journal of Organic Chemistry, 2019, 15, 1460-1467.	2.2	13
44	Biomimetic Synchronized Motion of Two Interacting Macrocycles in [3]Rotaxaneâ€Based Molecular Shuttles. Angewandte Chemie, 2019, 131, 15280-15285.	2.0	16
45	Probing the guest-binding preference of three structurally similar and conformationally adaptive macrocycles. Chemical Communications, 2019, 55, 7768-7771.	4.1	7
46	Naphthol-Based Macrocycles., 2019, , 1-21.		1
47	Shear-induced assembly of a transient yet highly stretchable hydrogel based on pseudopolyrotaxanes. Nature Chemistry, 2019, 11, 470-477.	13.6	161
48	Naphthocage: A Flexible yet Extremely Strong Binder for Singly Charged Organic Cations. Journal of the American Chemical Society, 2019, 141, 4468-4473.	13.7	53
49	Temperature-induced large amplitude conformational change in the complex of oxatub[4]arene revealed <i>via</i> rotaxane synthesis. Organic Chemistry Frontiers, 2019, 6, 1027-1031.	4.5	9
50	Fluorescent monitoring of the reaction kinetics of nonfluorescent molecules enabled by a fluorescent receptor. Chemical Communications, 2019, 55, 3128-3131.	4.1	19
51	Molecular recognition and fluorescent sensing of urethane in water. Chinese Chemical Letters, 2019, 30, 881-884.	9.0	24
52	Directional Shuttling of a Stimuliâ€Responsive Coneâ€Like Macrocycle on a Singleâ€State Symmetric Dumbbell Axle. Angewandte Chemie - International Edition, 2018, 57, 7809-7814.	13.8	56
53	Titelbild: Achieving Strong Positive Cooperativity through Activating Weak Nonâ€Covalent Interactions (Angew. Chem. 3/2018). Angewandte Chemie, 2018, 130, 605-605.	2.0	1
54	ERBB2 mutation: A promising target in non-squamous cervical cancer. Gynecologic Oncology, 2018, 148, 311-316.	1.4	27

#	Article	IF	CITATIONS
55	Selective recognition of aromatic hydrocarbons by endo-functionalized molecular tubes via C/N-Hâ‹â‹â‹ Ï€ interactions. Chinese Chemical Letters, 2018, 29, 91-94.	9.0	32
56	Achieving Strong Positive Cooperativity through Activating Weak Nonâ€Covalent Interactions. Angewandte Chemie, 2018, 130, 717-721.	2.0	24
57	Achieving Strong Positive Cooperativity through Activating Weak Nonâ€Covalent Interactions. Angewandte Chemie - International Edition, 2018, 57, 709-713.	13.8	58
58	The 7th Sino-German Frontiers of Chemistry Symposium - Learning from Nature. Chemistry - an Asian Journal, 2018, 13, 3556-3560.	3.3	0
59	The PIK3CA E542K and E545K mutations promote glycolysis and proliferation via induction of the \hat{l}^2 -catenin/SIRT3 signaling pathway in cervical cancer. Journal of Hematology and Oncology, 2018, 11, 139.	17.0	65
60	Molecular Recognition of Hydrophilic Molecules in Water by Combining the Hydrophobic Effect with Hydrogen Bonding. Journal of the American Chemical Society, 2018, 140, 13466-13477.	13.7	130
61	Bisâ€Naphthalene Cleft with Aggregationâ€Induced Emission Properties through Loneâ€Pairâ‹â‹â‹ï€ Interact Chemistry - A European Journal, 2018, 24, 16757-16761.	ions. 3.3	11
62	Self-assembly of two-dimensional structures in water from rigid and curved amphiphiles with a low molecular weight. Chemical Communications, 2018, 54, 10847-10850.	4.1	5
63	Directional Shuttling of a Stimuliâ€Responsive Coneâ€Like Macrocycle on a Singleâ€State Symmetric Dumbbell Axle. Angewandte Chemie, 2018, 130, 7935-7940.	2.0	20
64	A conformationally adaptive macrocycle: conformational complexity and host–guest chemistry of zorb[4]arene. Beilstein Journal of Organic Chemistry, 2018, 14, 1570-1577.	2.2	7
65	Establishment and molecular characterization of a human ovarian clear cell carcinoma cell line (FDOV1). Journal of Ovarian Research, $2018, 11, 58$.	3.0	5
66	Mutational analysis of <i> KRAS </i> and its clinical implications in cervical cancer patients. Journal of Gynecologic Oncology, 2018, 29, e4.	2.2	25
67	Allosteric cooperativity in ternary complexes with low symmetry. Chemical Communications, 2018, 54, 7677-7680.	4.1	17
68	A phase-selective, bis-urea organogelator with a curved bis-naphthalene core. Chinese Chemical Letters, 2017, 28, 782-786.	9.0	24
69	H2S-Responsive Lower Critical Solution Temperature of the Host–Guest Complex Based on Oxatub[4]arene with Tri(ethylene oxide) Moieties. Organic Letters, 2017, 19, 1212-1215.	4.6	28
70	Light-Controlled Switching of a Non-photoresponsive Molecular Shuttle. Organic Letters, 2017, 19, 2945-2948.	4.6	40
71	Molecular Recognition and Chirality Sensing of Epoxides in Water Using <i>Endo</i> Functionalized Molecular Tubes. Journal of the American Chemical Society, 2017, 139, 8436-8439.	13.7	127
72	Chemical and Bandgap Engineering in Monolayer Hexagonal Boron Nitride. Scientific Reports, 2017, 7, 45584.	3.3	73

#	Article	IF	CITATIONS
73	Oxatub[5,6]arene: synthesis, conformational analysis, and the recognition of C60 and C70. Chemical Communications, 2017, 53, 336-339.	4.1	30
74	Guestâ€Induced Folding and Selfâ€Assembly of Conformationally Adaptive Macrocycles into Nanosheets and Nanotubes. Chemistry - A European Journal, 2017, 23, 1516-1520.	3.3	19
75	Regioselective Synthesis of Methylene-Bridged Naphthalene Oligomers and Their Host–Guest Chemistry. Journal of Organic Chemistry, 2017, 82, 9570-9575.	3.2	13
76	Electronic Substituent Effects of Guests on the Conformational Network and Binding Behavior of Oxatub[4]arene. Journal of Organic Chemistry, 2017, 82, 10444-10449.	3.2	15
77	Effects of side chains of oxatub[4]arene on its conformational interconversion, molecular recognition and macroscopic self-assembly. Chemical Communications, 2017, 53, 12572-12575.	4.1	9
78	Synthesis of Bis-naphthalene and Their Derivatives and Their Complexation with Organic Cation. Chinese Journal of Organic Chemistry, 2017, 37, 603.	1.3	7
79	Photooxygenation and gasâ€phase reactivity of multiply threaded pseudorotaxanes. Journal of Mass Spectrometry, 2016, 51, 269-281.	1.6	2
80	Oxatub[4]arene: a molecular "transformer―capable of hosting a wide range of organic cations. Chemical Communications, 2016, 52, 5666-5669.	4.1	41
81	Naphthol-based macrocyclic receptors. Tetrahedron Letters, 2016, 57, 3978-3985.	1.4	38
82	Selective Recognition of Highly Hydrophilic Molecules in Water by Endo-Functionalized Molecular Tubes. Journal of the American Chemical Society, 2016, 138, 14550-14553.	13.7	126
83	endo-Functionalized molecular tubes: selective encapsulation of neutral molecules in non-polar media. Chemical Communications, 2016, 52, 9078-9081.	4.1	36
84	PIK3CA mutation analysis in Chinese patients with surgically resected cervical cancer. Scientific Reports, 2015, 5, 14035.	3.3	35
85	Comprehensive analysis of targetable oncogenic mutations in chinese cervical cancers. Oncotarget, 2015, 6, 4968-4975.	1.8	44
86	3D Printable Graphene Composite. Scientific Reports, 2015, 5, 11181.	3.3	337
87	Synthesis, Solid-State Structures, and Molecular Recognition of Chiral Molecular Tweezer and Related Structures Based on a Rigid Bis-Naphthalene Cleft. Organic Letters, 2015, 17, 3880-3883.	4.6	36
88	Oxatub [4] arene: a smart macrocyclic receptor with multiple interconvertible cavities. Chemical Science, 2015, 6, 6731-6738.	7.4	111
89	The influence of imperfect walls on the guest binding properties of hydrogen-bonded capsules. Chemical Communications, 2015, 51, 15276-15279.	4.1	6
90	Bis-urea macrocycles with a deep cavity. Chemical Communications, 2015, 51, 15490-15493.	4.1	34

#	Article	IF	Citations
91	Imine Macrocycle with a Deep Cavity: Guestâ€Selected Formation of <i>syn/anti</i> Configuration and Guestâ€Controlled Reconfiguration. Chemistry - A European Journal, 2015, 21, 3005-3012.	3.3	51
92	Integrative self-sorting: a versatile strategy for the construction of complex supramolecular architecture. Chemical Society Reviews, 2015, 44, 779-789.	38.1	350
93	The construction of complex multicomponent supramolecular systems via the combination of orthogonal self-assembly and the self-sorting approach. Chemical Science, 2014, 5, 4554-4560.	7.4	91
94	Alkane Lengths Determine Encapsulation Rates and Equilibria. Journal of the American Chemical Society, 2012, 134, 8070-8073.	13.7	54
95	Encapsulated hydrogen-bonded dimers of amide and carboxylic acid. Chemical Physics Letters, 2012, 548, 55-59.	2.6	10
96	Systems chemistry: logic gates based on the stimuli-responsive gel–sol transition of a crown ether-functionalized bis(urea) gelator. Chemical Science, 2012, 3, 2073.	7.4	127
97	Guest-Induced, Selective Formation of Isomeric Capsules with Imperfect Walls. Journal of the American Chemical Society, 2012, 134, 17498-17501.	13.7	30
98	Chelate Cooperativity and Spacer Length Effects on the Assembly Thermodynamics and Kinetics of Divalent Pseudorotaxanes. Journal of the American Chemical Society, 2012, 134, 1860-1868.	13.7	99
99	Complexes within complexes: hydrogen bonding in capsules. Chemical Science, 2012, 3, 3022.	7.4	25
100	[4]Pseudorotaxanes with Remarkable Self-Sorting Selectivities. Organic Letters, 2011, 13, 4502-4505.	4.6	55
101	Selfâ€Sorting of Waterâ€Soluble Cucurbituril Pseudorotaxanes. Chemistry - A European Journal, 2011, 17, 2344-2348.	3.3	79
102	Tandem mass spectrometry for the analysis of selfâ€sorted pseudorotaxanes: the effects of Coulomb interactions. Journal of Mass Spectrometry, 2010, 45, 788-798.	1.6	30
103	Templated versus non-templated synthesis of benzo-21-crown-7 and the influence of substituents on its complexing properties. Beilstein Journal of Organic Chemistry, 2010, 6, 14.	2.2	21
104	Monitoring Self-Sorting by Electrospray Ionization Mass Spectrometry: Formation Intermediates and Error-Correction during the Self-Assembly of Multiply Threaded Pseudorotaxanes. Journal of the American Chemical Society, 2010, 132, 2309-2320.	13.7	197
105	Integrative self-sorting is a programming language for high level self-assembly. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10425-10429.	7.1	169
106	A Double Plug–Socket System Capable of Molecular Keypad Locks through Controllable Photooxidation. Chemistry - A European Journal, 2009, 15, 9938-9945.	3.3	49
107	Unimolecular half-adders and half-subtractors based on acid-base reaction. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2009, 4, 292-298.	0.4	24
108	Integrative Self-Sorting: Construction of a Cascade-Stoppered Hetero[3]rotaxane. Journal of the American Chemical Society, 2008, 130, 13852-13853.	13.7	238

WEI JIANG

#	Article	IF	CITATIONS
109	A Proton-Triggered ONâ^'OFFâ^'ON Fluorescent Chemosensor for Mg(II) via Twisted Intramolecular Charge Transfer. Organic Letters, 2008, 10, 2873-2876.	4.6	66
110	A Multiscale Coarse-Graining Study of the Liquid/Vacuum Interface of Room-Temperature Ionic Liquids with Alkyl Substituents of Different Lengths. Journal of Physical Chemistry C, 2008, 112, 1132-1139.	3.1	105
111	A Multifunctional Arithmetical Processor Model Integrated Inside a Single Molecule. Journal of Physical Chemistry B, 2006, 110, 14231-14235.	2.6	79
112	Biomimetic Recognition of Quinones in Water by an Endoâ€Functionalized Cavity with Anthracene Sidewalls. Angewandte Chemie, 0, , .	2.0	7
113	Stabilization of Imines and Hemiaminals in Water by an Endoâ€Functionalized Container Molecule. Angewandte Chemie, 0, , .	2.0	0