
Howard Goldfine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1284794/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cyclopropane Fatty Acids Are Important for <i>Salmonella enterica</i> Serovar Typhimurium Virulence. Infection and Immunity, 2022, 90, IAI0047921.	2.2	7
2	Lipid diversity in clostridia. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 158966.	2.4	8
3	Life without air. Journal of Biological Chemistry, 2020, 295, 4124-4133.	3.4	3
4	Lipidomic Analysis ofClostridium cadaverisandClostridium fallax. Lipids, 2019, 54, 423-431.	1.7	5
5	Membrane Lipid Biogenesis. , 2019, , 525-538.		Ο
6	Caulobacter crescentus Adapts to Phosphate Starvation by Synthesizing Anionic Glycoglycerolipids and a Novel Glycosphingolipid. MBio, 2019, 10, .	4.1	25
7	Cytochrome c takes on plasmalogen catabolism. Journal of Biological Chemistry, 2018, 293, 8710-8711.	3.4	2
8	Recognition of conserved antigens by Th17 cells provides broad protection against pulmonary <i>Haemophilus influenzae</i> infection. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7149-E7157.	7.1	24
9	Editorial for Special Issue on lipid methodology. Analytical Biochemistry, 2017, 524, 1-2.	2.4	Ο
10	The anaerobic biosynthesis of plasmalogens. FEBS Letters, 2017, 591, 2714-2719.	2.8	31
11	Listeria ivanovii Infection in Mice: Restricted to the Liver and Lung with Limited Replication in the Spleen. Frontiers in Microbiology, 2016, 7, 790.	3.5	11
12	Symbiont-derived sphingolipids modulate mucosal homeostasis and B cells in teleost fish. Scientific Reports, 2016, 6, 39054.	3.3	40
13	The cellular lipids of Romboutsia. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 1076-1082.	2.4	15
14	Membrane Lipid Biogenesis. , 2016, , 1-14.		0
15	Lipidomic Analysis of Bacteria by Thin-Layer Chromatography and Liquid Chromatography/Mass Spectrometry. Springer Protocols, 2015, , 125-139.	0.3	10
16	Charge counter charge. Virulence, 2014, 5, 451-453.	4.4	4
17	Clostridium difficile contains plasmalogen species of phospholipids and glycolipids. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 1353-1359.	2.4	32
18	An ethanolamine-phosphate modified glycolipid in Clostridium acetobutylicum that responds to membrane stress. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 1185-1190.	2.4	16

HOWARD GOLDFINE

#	Article	IF	CITATIONS
19	The polar lipids of Clostridium psychrophilum, an anaerobic psychrophile. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 1108-1112.	2.4	22
20	Lipid diversity among botulinum neurotoxin-producing clostridia. Microbiology (United Kingdom), 2012, 158, 2577-2584.	1.8	17
21	Structural characterization of the polar lipids of Clostridium novyi NT. Further evidence for a novel anaerobic biosynthetic pathway to plasmalogens. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2011, 1811, 186-193.	2.4	27
22	New Evidence for a Novel Biosynthetic Pathway to Plasmalogens in Anaerobic Bacteria. FASEB Journal, 2011, 25, .	0.5	0
23	A phosphoethanolamine-modified glycosyl diradylglycerol in the polar lipids of Clostridium tetani. Journal of Lipid Research, 2010, 51, 1953-1961.	4.2	30
24	The appearance, disappearance and reappearance of plasmalogens in evolution. Progress in Lipid Research, 2010, 49, 493-498.	11.6	113
25	The ability of Listeria monocytogenes PI-PLC to facilitate escape from the macrophage phagosome is dependent on host PKCβ. Microbial Pathogenesis, 2009, 46, 1-5.	2.9	37
26	Functional modification of phosphatidylinositolâ€specific phospholipase C from <i>Bacillus cereus</i> by computer modeling and siteâ€directed mutagenesis. FASEB Journal, 2006, 20, A900.	0.5	0
27	Ornithine Lipid is Required for câ€ŧype Cytochrome Biogenesis. FASEB Journal, 2006, 20, .	0.5	Ο
28	Characterization of Listeria monocytogenes Expressing Anthrolysin O and Phosphatidylinositol-Specific Phospholipase C from Bacillus anthracis. Infection and Immunity, 2005, 73, 6639-6646.	2.2	32
29	Listeria monocytogenes phosphatidylinositol-specific phospholipase C has evolved for virulence by greatly reduced activity on GPI anchors. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12927-12931.	7.1	41
30	Membrane Lipids of Clostridia. , 2005, , 297-309.		14
31	Mobilization of Protein Kinase C in Macrophages Induced by Listeria monocytogenes Affects Its Internalization and Escape from the Phagosome. Infection and Immunity, 2002, 70, 4650-4660.	2.2	83
32	From Unsaturated Fatty Acids to Lipid Polymorphism. Biochemical and Biophysical Research Communications, 2002, 292, 1201-1207.	2.1	1
33	Mutagenesis of Active-Site Histidines of <i>Listeria monocytogenes</i> Phosphatidylinositol-Specific Phospholipase C: Effects on Enzyme Activity and Biological Function. Infection and Immunity, 1999, 67, 182-186.	2.2	28
34	<i>Listeria monocytogenes</i> Phospholipase C-Dependent Calcium Signaling Modulates Bacterial Entry into J774 Macrophage-Like Cells. Infection and Immunity, 1999, 67, 1770-1778.	2.2	97
35	Modulation of Enzymatic Activity and Biological Function of <i>Listeria monocytogenes</i> Broad-Range Phospholipase C by Amino Acid Substitutions and by Replacement with the <i>Bacillus cereus</i> Ortholog. Infection and Immunity, 1998, 66, 4823-4831.	2.2	34
36	Proteolytic Pathways of Activation and Degradation of a Bacterial Phospholipase C during Intracellular Infection by Listeria monocytogenes. Journal of Cell Biology, 1997, 137, 1381-1392.	5.2	100

HOWARD GOLDFINE

#	Article	IF	CITATIONS
37	Isolation and characterization of new phosphatidylglycerol acetals of plasmalogens. A family of ether lipids in clostridia. FEBS Journal, 1994, 223, 957-963.	0.2	15
38	Phosphatidylglycerol acetal of plasmenylethanolamine as an intermediate in ether lipid formation in <i>Clostridium butyricum</i> . Biochemistry and Cell Biology, 1990, 68, 225-230.	2.0	19
39	Lipid shape as a determinant of lipid composition in Clostridium butyricum. The effects of incorporation of various fatty acids on the ratios of the major ether lipids. Biochimica Et Biophysica Acta - Biomembranes, 1987, 904, 283-289.	2.6	27
40	Deuterium nuclear magnetic resonance studies on the plasmalogens and the glycerol acetals of plasmalogens of Clostridium butyricum and Clostridium beijerinckii. Biochemistry, 1987, 26, 5826-5833.	2.5	22
41	Regulation of bilayer stability in Clostridium butyricum: studies on the polymorphic phase behavior of the ether lipids. Biochemistry, 1987, 26, 2814-2822.	2.5	84
42	Phospholipid aliphatic chain composition modulates lipid class composition, but not lipid asymmetry in Clostridium butyricum. Biochimica Et Biophysica Acta - Biomembranes, 1985, 813, 10-18.	2.6	33
43	Modulation of Polar Lipid Composition by Aliphatic Chain Unsaturation in Bacteria. Current Topics in Cellular Regulation, 1985, 26, 163-174.	9.6	14
44	Phospholipids ofRhizobium meliloti andAgrobacterium tumefaciens: Lack of effect of Ti plasmid. Lipids, 1983, 18, 602-606.	1.7	17
45	Ether phospholipid asymmetry in Clostridium butyricum. Biochemical and Biophysical Research Communications, 1982, 108, 1502-1507.	2.1	24
46	Lipids of Prokaryotes–Structure and Distribution. Current Topics in Membranes and Transport, 1982, 17, 1-43.	0.6	93
47	Effects of growth temperature and supplementation with exogenous fatty acids on some physical properties of Clostridium butyricum phospholipids. Lipids and Lipid Metabolism, 1977, 488, 341-352.	2.6	39
48	Replacement of acyl and alk-1-enyl groups in Clostridium butyricum phospholipids by exogenous fatty acids. Biochemistry, 1975, 14, 3642-3647.	2.5	33
49	Specificity of cyclopropane fatty acid synthesis in Escherichia coli. Utilization of isomers of monounsaturated fatty acids. Biochemistry, 1974, 13, 1978-1983.	2.5	27
50	Phospholipids of Clostridium butyricum. V. Effects of growth temperature on fatty acid, alk-1-enyl ether group, and phospholipid composition. Journal of Lipid Research, 1974, 15, 500-507.	4.2	49
51	Alterations in the Outer Membrane of the Cell Envelope of Heptose-Deficient Mutants of Escherichia coli. Journal of Bacteriology, 1974, 117, 527-543.	2.2	308
52	Isolation and Characterization of 2-Keto-3-Deoxyoctonate-Lipid A from a Heptose-Deficient Mutant of Escherichia coli. Journal of Bacteriology, 1972, 111, 531-541.	2.2	28
53	Isolation and characterization of a temperature-sensitive mutant of Escherichia coli with a lesion in the acylation of lysophosphatidic acid. Biochemical and Biophysical Research Communications, 1971, 42, 245-251.	2.1	50
54	Phospholipids of Clostridium butyricum. IV. Analysis of the positional isomers of monounsaturated and cyclopropane fatty acids and alk-1′-enyl ethers by capillary column chromatography. Journal of Lipid Research, 1971, 12, 214-220.	4.2	29

HOWARD GOLDFINE

#	Article	IF	CITATIONS
55	<i>N</i> -Methyl Groups in Bacterial Lipids III. Phospholipids of Hyphomicrobia. Journal of Bacteriology, 1968, 95, 367-375.	2.2	52
56	Phospholipids of Clostridium butyricum. Journal of Biological Chemistry, 1967, 242, 5700-5708.	3.4	49
57	Enzymatic Synthesis of Cyclo propane Fatty Aldehydes. Nature, 1965, 206, 1253-1254.	27.8	15
58	The Evolution of Oxygen As a Biosynthetic Reagent. Journal of General Physiology, 1965, 49, 253-268.	1.9	30
59	Phospholipids of Clostridium butyricum. Journal of Biological Chemistry, 1965, 240, 1559-1567.	3.4	113
60	<i>N</i> -METHYL GROUPS IN BACTERIAL LIPIDS. Journal of Bacteriology, 1964, 87, 8-15.	2.2	77
61	Enzymatic Synthesis of Cyclopropane Fatty Acids Catalyzed by Bacterial Extracts. Journal of Biological Chemistry, 1963, 238, 1242-1248.	3.4	110
62	The characterization and biosynthesis of an N-methylethanolamine phospholipid from Clostridium butyricum. Biochimica Et Biophysica Acta, 1962, 59, 504-506.	1.3	52
63	On the Origin of Unsaturated Fatty Acids in Clostridia. Journal of Biological Chemistry, 1961, 236, 2596-2601.	3.4	211
64	A Novel Mechanism for the Biosynthesis of Unsaturated Fatty Acids. Journal of Biological Chemistry, 1961, 236, PC70-PC71.	3.4	82
65	Propionic Acid Metabolism. Journal of Biological Chemistry, 1960, 235, 2238-2245.	3.4	37
66	NUCLEOSIDE INCORPORATION INTO HELA CELLS INFECTED WITH POLIOMYELITIS VIRUS. Journal of Biological Chemistry, 1958, 232, 577-588.	3.4	19