Kathleen Greenham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1283978/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Integrating circadian dynamics with physiological processes in plants. Nature Reviews Genetics, 2015, 16, 598-610.	16.3	402
2	The <i>TRANSPORT INHIBITOR RESPONSE2</i> Gene Is Required for Auxin Synthesis and Diverse Aspects of Plant Development. Plant Physiology, 2009, 151, 168-179.	4.8	185
3	Factors effecting expression of vaccines in microalgae. Biologicals, 2009, 37, 133-138.	1.4	169
4	Regulation of Auxin Homeostasis and Gradients in <i>Arabidopsis</i> Roots through the Formation of the Indole-3-Acetic Acid. Plant Cell, 2013, 25, 3858-3870.	6.6	131
5	Hypocotyl Transcriptome Reveals Auxin Regulation of Growth-Promoting Genes through GA-Dependent and -Independent Pathways. PLoS ONE, 2012, 7, e36210.	2.5	127
6	Genetic analysis of the Arabidopsis TIR1/AFB auxin receptors reveals both overlapping and specialized functions. ELife, 2020, 9, .	6.0	115
7	Temporal network analysis identifies early physiological and transcriptomic indicators of mild drought in Brassica rapa. ELife, 2017, 6, .	6.0	95
8	The <i>Arabidopsis</i> Auxin Receptor F-Box Proteins AFB4 and AFB5 Are Required for Response to the Synthetic Auxin Picloram. G3: Genes, Genomes, Genetics, 2016, 6, 1383-1390.	1.8	89
9	Transcriptional networks — crops, clocks, and abiotic stress. Current Opinion in Plant Biology, 2015, 24, 39-46.	7.1	70
10	Bacterial―and plantâ€ŧype phospho <i>enol</i> pyruvate carboxylase polypeptides interact in the heteroâ€oligomeric Classâ€2 PEPC complex of developing castor oil seeds. Plant Journal, 2007, 52, 839-849.	5.7	68
11	Geographic Variation of Plant Circadian Clock Function in Natural and Agricultural Settings. Journal of Biological Rhythms, 2017, 32, 26-34.	2.6	59
12	Abiotic stress through time. New Phytologist, 2021, 231, 40-46.	7.3	34
13	TRiP: Tracking Rhythms in Plants, an automated leaf movement analysis program for circadian period estimation. Plant Methods, 2015, 11, 33.	4.3	32
14	Prediction of conserved and variable heat and cold stress response in maize using cis-regulatory information. Plant Cell, 2022, 34, 514-534.	6.6	30
15	Variation in circadian rhythms is maintained among and within populations in <i>Boechera stricta</i> . Plant, Cell and Environment, 2016, 39, 1293-1303.	5.7	29
16	Expansion of the circadian transcriptome in Brassica rapa and genome-wide diversification of paralog expression patterns. ELife, 2020, 9, .	6.0	26
17	Time to build on good design: Resolving the temporal dynamics of gene regulatory networks. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6325-6327.	7.1	10
18	Genetic and genomic resources to study natural variation in <i>Brassica rapa</i> . Plant Direct, 2020, 4, e00285.	1.9	8

#	Article	IF	CITATIONS
19	The biology of time: dynamic responses of cell types to developmental, circadian, and environmental cues. Plant Journal, 2021, , .	5.7	8
20	Populations Are Differentiated in Biological Rhythms without Explicit Elevational Clines in the Plant <i>Mimulus laciniatus</i> . Journal of Biological Rhythms, 2020, 35, 452-464.	2.6	5
21	Detecting spatially co-expressed gene clusters with functional coherence by graph-regularized convolutional neural network. Bioinformatics, 2022, 38, 1344-1352.	4.1	1
22	Rhythmic Leaf and Cotyledon Movement Analysis. Methods in Molecular Biology, 2022, 2494, 125-134.	0.9	0