Eric M Kennedy

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1283976/eric-m-kennedy-publications-by-year.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

241
papers

4,702
citations

h-index

54
g-index

5,291
ext. papers

6
avg, IF

L-index

#	Paper	IF	Citations
241	Zeolites for Sustainable Chemical Transformations 2022 , 321-349		
240	Hydrodeoxygenation of oleic acid for effective diesel-like hydrocarbon production using zeolite-based catalysts. <i>Reaction Kinetics, Mechanisms and Catalysis</i> , 2021 , 134, 1069	1.6	
239	Hydrodeoxygenation of guiacol over ion-exchanged ruthenium ZSM-5 and BEA zeolites. <i>Journal of Catalysis</i> , 2021 , 396, 157-165	7.3	10
238	Application of concurrent grinding in direct aqueous carbonation of magnesium silicates. <i>Journal of CO2 Utilization</i> , 2021 , 48, 101516	7.6	0
237	Kinetics of Decomposition of PFOS Relevant to Thermal Desorption Remediation of Soils. <i>Industrial & Engineering Chemistry Research</i> , 2021 , 60, 9080-9087	3.9	4
236	Insights into chemical stability of Mg-silicates and silica in aqueous systems using 25Mg and 29Si solid-state MAS NMR spectroscopy: Applications for CO2 capture and utilisation. <i>Chemical Engineering Journal</i> , 2021 , 420, 127656	14.7	4
235	Role of metal support during ru-catalysed hydrodeoxygenation of biocrude oil. <i>Applied Catalysis B: Environmental</i> , 2021 , 281, 119470	21.8	16
234	In Situ XAFS Study of a Modified TS-1 Framework for Carbonyl Formation. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 16483-16488	3.8	1
233	Methane oxidation by N2O over Fe-FER catalysts prepared by different methods: Nature of active iron species, stability of surface oxygen species and selectivity to products. <i>Journal of Catalysis</i> , 2021 , 400, 10-19	7.3	3
232	Novel hierarchical core-shell BEA@NanoZSM-5 zeolite for improved cracking performance for 1,3,5-triisopropylbenzene and n-hexadecane. <i>Microporous and Mesoporous Materials</i> , 2021 , 328, 111399	5.3	3
231	Hydrodeoxygenation of guaiacol over BEA supported bimetallic Ni-Fe catalysts with varied impregnation sequence. <i>Journal of Catalysis</i> , 2021 , 404, 1-11	7.3	2
230	Natural zeolite supported Ni catalysts for hydrodeoxygenation of anisole. <i>Green Chemistry</i> , 2021 , 23, 4673-4684	10	9
229	Highly-dispersed Ni on BEA catalyst prepared by ion-exchange-deposition-precipitation for improved hydrodeoxygenation activity. <i>Applied Catalysis B: Environmental</i> , 2020 , 267, 118690	21.8	27
228	The stability of Pd/TS-1 and Pd/silicalite-1 for catalytic oxidation of methane understanding the role of titanium. <i>Catalysis Science and Technology</i> , 2020 , 10, 1193-1204	5.5	19
227	The role of acid and metal sites in hydrodeoxygenation of guaiacol over Ni/Beta catalysts. <i>Catalysis Science and Technology</i> , 2020 , 10, 810-825	5.5	33
226	Effect of Manganese on the Selective Catalytic Hydrogenation of COx in the Presence of Light Hydrocarbons Over Ni/Al2O3: An Experimental and Computational Study. <i>ACS Catalysis</i> , 2020 , 10, 1535	-1347	9
225	Structure of Silica Polymers and Reaction Mechanism for Formation of Silica-Rich Precipitated Phases in Direct Aqueous Carbon Mineralization. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 6828-6839	3.9	9

224	Formation of Surface Oxygen Species and the Conversion of Methane to Value-Added Products with N2O as Oxidant over Fe-Ferrierite Catalysts. <i>ACS Catalysis</i> , 2020 , 10, 1406-1416	13.1	15
223	Shape selectivity of zeolite catalysts for the hydrodeoxygenation of biocrude oil and its model compounds. <i>Microporous and Mesoporous Materials</i> , 2020 , 309, 110561	5.3	9
222	Study on Catalyst Deactivation During the Hydrodeoxygenation of Model Compounds. <i>Topics in Catalysis</i> , 2020 , 63, 778-792	2.3	4
221	Products and mechanism of thermal decomposition of chlorpyrifos under inert and oxidative conditions. <i>Environmental Sciences: Processes and Impacts</i> , 2020 , 22, 2084-2094	4.3	2
220	Application of a concurrent grinding technique for two-stage aqueous mineral carbonation. <i>Journal of CO2 Utilization</i> , 2020 , 42, 101347	7.6	4
219	Magnesium Leachability of Mg-Silicate Peridotites: The Effect on Magnesite Yield of a Mineral Carbonation Process. <i>Minerals (Basel, Switzerland)</i> , 2020 , 10, 1091	2.4	1
218	Insights on the stability of cuprous chloride under high pressure: An equilibrium ab initio atomistic thermodynamics study. <i>Journal of Physics and Chemistry of Solids</i> , 2020 , 136, 109158	3.9	0
217	Synergistic catalysis of carbon-partitioned LaF3 B aF2 composites for the coupling of CH4 with CHF3 to VDF. <i>Catalysis Science and Technology</i> , 2019 , 9, 1338-1348	5.5	6
216	Introduction to the special section: Papers from the International Conference on Accelerated Carbonation for Environmental and Material Engineering. <i>Environmental Progress and Sustainable Energy</i> , 2019 , 38, e13245	2.5	
215	Formation of magnesite and hydromagnesite from direct aqueous carbonation of thermally activated lizardite. <i>Environmental Progress and Sustainable Energy</i> , 2019 , 38, e13244	2.5	1
214	Direct aqueous carbonation of heat activated serpentine: Discovery of undesirable side reactions reducing process efficiency. <i>Applied Energy</i> , 2019 , 242, 1369-1382	10.7	19
213	Thermal oxidation of dieldrin and concomitant formation of toxic products including polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/F). <i>Chemosphere</i> , 2019 , 225, 209-216	8.4	3
212	Dissolution of heat activated serpentine for CO2 sequestration: The effect of silica precipitation at different temperature and pH values. <i>Journal of CO2 Utilization</i> , 2019 , 30, 123-129	7.6	11
211	Mechanisms of thermal decomposition of cyclodiene pesticides, identification and possible mitigation of their toxic products. <i>Proceedings of the Combustion Institute</i> , 2019 , 37, 1143-1150	5.9	4
210	Formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) from oxidation of 4,4?-dichlorobiphenyl (4,4?-DCB). <i>Proceedings of the Combustion Institute</i> , 2019 , 37, 1075-1082	5.9	8
209	Comparison of Direct, Selective Oxidation of Methane by N2O over Fe-ZSM-5, Fe-Beta, and Fe-FER Catalysts. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 27436-27447	3.8	18
208	Pyrolysis of Glyphosate and Its Toxic Products. <i>Environmental Science & Environmental Science & Envir</i>	42±63 ₃ 7+	4 <i>7</i> 7
207	Mass transfer and kinetic study on BEA zeolite-catalysed oil hydroesterification. <i>Renewable Energy</i> , 2019 , 135, 417-425	8.1	8

206	CO2 Capture Modeling Using Heat-Activated Serpentinite Slurries. Energy & CO2 Capture Modeling Using Heat-Activated Serpentinite Slurries. Energy & CO2 Capture Modeling Using Heat-Activated Serpentinite Slurries.	7466	8
205	Mechanistic insights into the Knoevenagel condensation reaction over ZnO catalysts: Direct observation of surface intermediates using in situ FTIR. <i>Journal of Catalysis</i> , 2019 , 369, 157-167	7.3	18
204	Development of Concurrent grinding for application in aqueous mineral carbonation. <i>Journal of Cleaner Production</i> , 2019 , 212, 151-161	10.3	18
203	Utilization of Glycerol and its Derivatives in a Nickel-Based SOFC. <i>Energy Technology</i> , 2019 , 7, 80-85	3.5	3
202	ACEMEISynthesis and characterization of reactive silica residues from two stage mineral carbonation Process. <i>Environmental Progress and Sustainable Energy</i> , 2019 , 38, e13066	2.5	13
201	ACEME: Direct Aqueous Mineral Carbonation of Dunite Rock. <i>Environmental Progress and Sustainable Energy</i> , 2019 , 38, e13075	2.5	9
200	The utilisation of feed and byproducts of mineral carbonation processes as pozzolanic cement replacements. <i>Journal of Cleaner Production</i> , 2018 , 186, 499-513	10.3	26
199	Catalytic coupling of CH4 with CHF3 for the synthesis of VDF over LaOF catalyst 2018 , 8, 587-602		5
198	Understanding Structure E unction Relationships in Zeolite-Supported Pd Catalysts for Oxidation of Ventilation Air Methane. <i>ACS Catalysis</i> , 2018 , 8, 5852-5863	13.1	27
197	An experimental investigation on the effects of adding a transition metal to Ni/Al2O3 for catalytic hydrogenation of CO and CO2 in presence of light alkanes and alkenes. <i>Catalysis Today</i> , 2018 , 307, 277-	283	9
196	Hydroesterification of bio-oils over HZSM-5, BETA and Y zeolites. <i>Clean Technologies and Environmental Policy</i> , 2018 , 20, 727-738	4.3	6
195	A proposed reaction mechanism for the selective oxidation of methane with nitrous oxide over Co-ZSM-5 catalyst forming synthesis gas (CO + H2). <i>International Journal of Hydrogen Energy</i> , 2018 , 43, 13133-13144	6.7	4
194	Study on mineral carbonation of heat activated lizardite at pilot and laboratory scale. <i>Journal of CO2 Utilization</i> , 2018 , 26, 230-238	7.6	26
193	On the Chemistry of Iron Oxide Supported on FAlumina and Silica Catalysts. ACS Omega, 2018, 3, 5362-5	337 <i>9</i> 1	22
192	Mechanism of the Thermal Decomposition of Chlorpyrifos and Formation of the Dioxin Analog, 2,3,7,8-Tetrachloro-1,4-dioxino-dipyridine (TCDDpy). <i>Environmental Science & Environmental Science & Envir</i>	10.3	6
191	In-situ FTIR study on the mechanism of both steps of zeolite-catalysed hydroesterification reaction in the context of biodiesel manufacturing. <i>Fuel</i> , 2018 , 232, 12-26	7.1	24
190	Process for Chloroform Decomposition: Nonthermal Plasma Polymerization with Methane and Hydrogen. <i>Industrial & Decomposition: Research</i> , 2018 , 57, 9075-9082	3.9	1
189	Reaction of nitrous oxide with methane to synthesis gas: A thermodynamic and catalytic study. Journal of Energy Chemistry, 2017 , 26, 155-162	12	3

188	Separation and analysis of high range extractable molecules formed during coal pyrolysis using coupled thin layer chromatography-imaging mass spectrometry (TLC-LDI-IMS). <i>Fuel</i> , 2017 , 196, 269-279	7.1	11	
187	A low energy pathway to CuCl2: A theoretical investigation. <i>Chemical Physics Letters</i> , 2017 , 672, 54-56	2.5		
186	Cobalt Species Active for Nitrous Oxide (N2O) Decomposition within a Temperature Range of 300B00CC. <i>Australian Journal of Chemistry</i> , 2017 , 70, 1138	1.2	2	
185	A mechanistic study of the Knoevenagel condensation reaction: new insights into the influence of acid and base properties of mixed metal oxide catalysts on the catalytic activity. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 26630-26644	3.6	25	
184	Mechanism and Rate of Thermal Decomposition of Hexachlorocyclopentadiene and Its Importance in PCDD/F Formation from the Combustion of Cyclodiene Pesticides. <i>Journal of Physical Chemistry A</i> , 2017 , 121, 5871-5883	2.8	6	
183	Adsorption of 2-Chlorophenol on the Surface of Silica- and Alumina-Supported Iron Oxide: An FTIR and XPS Study. <i>ChemCatChem</i> , 2017 , 9, 481-491	5.2	9	
182	Development of Combustion Technology for Methane Emitted from Coal-Mine Ventilation Air Systems. <i>Energy Technology</i> , 2017 , 5, 521-538	3.5	20	
181	Gas phase pyrolysis of endosulfan and formation of dioxin precursors of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F). <i>Proceedings of the Combustion Institute</i> , 2017 , 36, 1119-	15127	5	
180	Oxidation of 4-bromo-4'-chlorobiphenyl, model species for forming mixed halogenated aromatic compounds. <i>International Journal of Environment and Pollution</i> , 2017 , 61, 243	0.7	4	
179	Effect of methane on the conversion of HFC-134a in a dielectric barrier discharge non-equilibrium plasma reactor. <i>Chemical Engineering Journal</i> , 2016 , 284, 412-421	14.7	8	
178	Zeolite-supported iron catalysts for allyl alcohol synthesis from glycerol. <i>Applied Catalysis A: General</i> , 2016 , 509, 130-142	5.1	25	
177	Gas Phase Thermal Oxidation of Endosulfan and Formation of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	6	
176	Reaction of dichloromethane under non-oxidative conditions in a dielectric barrier discharge reactor and characterisation of the resultant polymer. <i>Chemical Engineering Journal</i> , 2016 , 290, 499-506	14.7	3	
175	Catalytic conversion of glycerol to polymers in the presence of ammonia. <i>Chemical Engineering Journal</i> , 2016 , 291, 279-286	14.7	6	
174	The use of LDI-TOF imaging mass spectroscopy to study heated coal with a temperature gradient incorporating the plastic layer and semi-coke. <i>Fuel</i> , 2016 , 165, 33-40	7.1	16	
173	Maceral separation from coal by the Reflux Classifier. Fuel Processing Technology, 2016, 143, 43-50	7.2	27	
172	Formation of PCDD/Fs in Oxidation of 2-Chlorophenol on Neat Silica Surface. <i>Environmental Science & Environmental & Environme</i>	10.3	33	
171	Experimental Study on the Reaction of CCl3F and CH4 in a Dielectric Barrier Discharge Nonequilibrium Plasma Reactor. <i>Industrial & Engineering Chemistry Research</i> , 2016 , 55, 463-471	3.9	2	

170	Experimental investigation of the reaction of HCFC-22 and methane in a dielectric barrier discharge non-equilibrium plasma. <i>Chemical Engineering Journal</i> , 2016 , 301, 73-82	14.7	2
169	Towards understanding the improved stability of palladium supported on TS-1 for catalytic combustion. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 10528-37	3.6	15
168	Experimental study on the precipitation of magnesite from thermally activated serpentine for CO2 sequestration. <i>Chemical Engineering Journal</i> , 2016 , 303, 439-449	14.7	33
167	The effect of synthesis gas composition on the performance of Ni-based solid oxide fuel cells. <i>Chemical Engineering Research and Design</i> , 2015 , 101, 22-26	5.5	5
166	S-Nitrosation of Aminothiones. <i>Journal of Organic Chemistry</i> , 2015 , 80, 6951-8	4.2	1
165	Accelerated hydrothermal ageing of Pd/Al2O3 for catalytic combustion of ventilation air methane. <i>Catalysis Science and Technology</i> , 2015 , 5, 4008-4016	5.5	5
164	The stability of Co3O4, Fe2O3, Au/Co3O4 and Au/Fe2O3 catalysts in the catalytic combustion of lean methane mixtures in the presence of water. <i>Catalysis Today</i> , 2015 , 258, 276-283	5.3	29
163	Decomposition of S-nitroso species. <i>RSC Advances</i> , 2015 , 5, 29914-29923	3.7	5
162	Enhancing allyl alcohol selectivity in the catalytic conversion of glycerol; influence of product distribution on the subsequent epoxidation step. <i>Asia-Pacific Journal of Chemical Engineering</i> , 2015 , 10, n/a-n/a	1.3	2
161	Influence of impurities on the epoxidation of allyl alcohol to glycidol with hydrogen peroxide over titanium silicate TS-1. <i>Applied Catalysis A: General</i> , 2015 , 489, 241-246	5.1	16
160	Thermodynamic stability and structure of cuprous chloride surfaces: a DFT investigation. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 7038-45	3.6	8
159	Oxidative Coupling and Hydroxylation of Phenol over Transition Metal and Acidic Zeolites: Insights into Catalyst Function. <i>Catalysis Letters</i> , 2014 , 144, 9-15	2.8	11
158	Study of thermally conditioned and weak acid-treated serpentinites for mineralisation of carbon dioxide. <i>Minerals Engineering</i> , 2014 , 59, 17-30	4.9	16
157	Evidence of the Formation of Surface Palladium Carbide during the Catalytic Combustion of Lean Methane/Air Mixtures. <i>Energy Technology</i> , 2014 , 2, 243-249	3.5	9
156	Water formation via HCl oxidation on Cu(1 0 0). <i>Applied Surface Science</i> , 2014 , 299, 156-161	6.7	5
155	Catalytic combustion of ventilation air methane (VAM) [long term catalyst stability in the presence of water vapour and mine dust. <i>Catalysis Science and Technology</i> , 2014 , 4, 1793-1802	5.5	20
154	Nonequilibrium Plasma Polymerization of HFC-134a in a Dielectric Barrier Discharge Reactor: Polymer Characterization and a Proposed Mechanism for Polymer Formation. <i>IEEE Transactions on Plasma Science</i> , 2014 , 42, 3095-3100	1.3	7
153	Catalytic conversion of glycerol to allyl alcohol; effect of a sacrificial reductant on the product yield. <i>Catalysis Science and Technology</i> , 2014 , 4, 3090-3098	5.5	19

(2013-2014)

152	Reaction of carbon tetrachloride with methane in a non-equilibrium plasma at atmospheric pressure, and characterisation of the polymer thus formed. <i>Journal of Hazardous Materials</i> , 2014 , 280, 38-45	12.8	3
151	The Effect of Additive on NOx Emission During Thermal Decomposition of Nano-Recrystallised Nitrate Salts. <i>Ceramic Transactions</i> , 2014 , 307-319	0.1	
150	Characterization of Polymer Synthesized from the Nonequilibrium Plasma Conversion of CFC-12 and Methane in a Dielectric Barrier Discharge Reactor. <i>Industrial & Dielectric Barrier Discharge Reactor</i> . <i>Dielectric Barrier Disch</i>	3.9	4
149	Selection of acid for weak acid processing of wollastonite for mineralisation of CO2. <i>Fuel</i> , 2014 , 122, 277-286	7.1	33
148	Partial oxidation of methane with nitrous oxide forms synthesis gas over cobalt exchanged ZSM-5. <i>Catalysis Communications</i> , 2014 , 53, 42-46	3.2	16
147	Biologically enhanced degassing and precipitation of magnesium carbonates derived from bicarbonate solutions. <i>Minerals Engineering</i> , 2014 , 61, 113-120	4.9	7
146	HCl Adsorption on Copper-Modified ZSM-5: FTIR and DFT Study. <i>Journal of Physical Chemistry C</i> , 2013 , 130912084723007	3.8	6
145	Comparative Study on the Formation of Toxic Species from 4-chlorobiphenyl in Fires: Effect of Catalytic Surfaces. <i>Procedia Engineering</i> , 2013 , 62, 350-358		6
144	Study on the Reaction of CCl2F2 with CH4 in a Dielectric Barrier Discharge Nonequilibrium Plasma. <i>Plasma Processes and Polymers</i> , 2013 , 10, n/a-n/a	3.4	1
143	Energy cost of heat activating serpentinites for CO2 storage by mineralisation. <i>International Journal of Greenhouse Gas Control</i> , 2013 , 17, 225-239	4.2	34
142	Roles of peroxides and unsaturation in spontaneous heating of linseed oil. <i>Fire Safety Journal</i> , 2013 , 61, 108-115	3.3	7
141	Theoretical investigation into the low-temperature oxidation of ethylbenzene. <i>Proceedings of the Combustion Institute</i> , 2013 , 34, 315-323	5.9	13
140	Formation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/F) by precursor pathways in oxidation of pesticide alpha-cypermethrin. <i>Proceedings of the Combustion Institute</i> , 2013 , 34, 3499-3507	5.9	7
139	Formation of weathering-derived magnesite deposits in the New England Orogen, New South Wales, Australia: Implications from mineralogy, geochemistry and genesis of the Attunga agnesite deposit. <i>Mineralium Deposita</i> , 2013 , 48, 525-541	4.8	17
138	Comparative Study of the Physicochemical Properties of Ortho-Substituted Aromatic Nitroso Compounds. <i>Journal of Chemical & Camp: Engineering Data</i> , 2013 , 58, 1005-1010	2.8	5
137	Rate constants for reactions of ethylbenzene with hydroperoxyl radical. <i>Combustion and Flame</i> , 2013 , 160, 9-16	5.3	22
136	A Melamine-Modified Exeolite with Enhanced CO2 Capture Properties. <i>Energy Technology</i> , 2013 , 1, 345-3	49	14
135	Trapping of Nitric Oxide, Generated during Sensitization of Ammonium Nitrate Emulsion Explosive, by Aromatic Nitroso Sulfonates. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 10561-10568	3.9	1

134	Non-Oxidative Conversion of 1,2-Dichloroethane in a Non-Thermal Plasma and Characterisation of the Polymer Formed. <i>Plasma Processes and Polymers</i> , 2013 , 10, 141-149	3.4	5
133	Determination of toxic products released in combustion of pesticides. <i>Progress in Energy and Combustion Science</i> , 2012 , 38, 400-418	33.6	20
132	Suppression Performance Comparison for Aspirated, Compressed-Air and In Situ Chemically Generated Class B Foams. <i>Fire Technology</i> , 2012 , 48, 625-640	3	11
131	Accurate rate constants for decomposition of aqueous nitrous acid. <i>Inorganic Chemistry</i> , 2012 , 51, 2178	3-851	36
130	Mechanistic Study of Trapping of NO by 3,5-Dibromo-4-Nitrosobenzene Sulfonate. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 14325-14336	3.9	3
129	Conversion of Fluorine-Containing Ozone-Depleting and Greenhouse Gases to Valuable Polymers in a Nonthermal Plasma. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 11279-11283	3.9	18
128	Mechanism of Formation of Volatile Organic Compounds from Oxidation of Linseed Oil. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 5653-5661	3.9	16
127	Carbon deposition and gasification kinetics of used lanthanide-promoted Co-Ni/Al2O3 catalysts from CH4 dry reforming. <i>Catalysis Communications</i> , 2012 , 26, 183-188	3.2	38
126	Identification and Quantitation of Volatile Organic Compounds from Oxidation of Linseed Oil. <i>Industrial & Discourse Chemistry Research</i> , 2012 , 51, 5645-5652	3.9	25
125	Oxidation of dibenzo-p-dioxin: Formation of initial products, 2-methylbenzofuran and 3-hydro-2-methylenebenzofuran. <i>Combustion and Flame</i> , 2012 , 159, 3056-3065	5.3	6
124	Experimental investigation of alumina and quartz as dielectrics for a cylindrical double dielectric barrier discharge reactor in argon diluted methane plasma. <i>Chemical Engineering Journal</i> , 2012 , 180, 178-189	14.7	55
123	Experimental study of decomposition of aqueous nitrosyl thiocyanate. <i>Inorganic Chemistry</i> , 2011 , 50, 7440-52	5.1	10
122	First-principles study of the electronic, optical and bonding properties in dolomite. <i>Computational Materials Science</i> , 2011 , 50, 1037-1042	3.2	24
121	Ab-initio electronic structure, optical, dielectric and bonding properties of lizardite-1T. <i>Computational Materials Science</i> , 2011 , 50, 1725-1730	3.2	11
120	Fischer Tropsch synthesis: Effect of promoter type on alumina-supported Mo carbide catalysts. <i>Catalysis Today</i> , 2011 , 175, 450-459	5.3	20
119	Formation of toxic species and precursors of PCDD/F in thermal decomposition of alpha-cypermethrin. <i>Chemosphere</i> , 2011 , 85, 143-50	8.4	7
118	Optimization of antigorite heat pre-treatment via kinetic modeling of the dehydroxylation reaction for CO2 mineralization 2011 , 1, 294-304		18
117	Small-Scale Test Protocol for Firefighting Foams DEF(AUST)5706: Effect of Bubble Size Distribution and Expansion Ratio. <i>Fire Technology</i> , 2011 , 47, 149-162	3	24

116	Oxidation reactions and spontaneous ignition of linseed oil. <i>Proceedings of the Combustion Institute</i> , 2011 , 33, 2625-2632	5.9	10
115	Rate constants for hydrogen abstraction reactions by the hydroperoxyl radical from methanol, ethenol, acetaldehyde, toluene, and phenol. <i>Journal of Computational Chemistry</i> , 2011 , 32, 1725-33	3.5	37
114	Mechanistic study of the reaction of CHF3 with CH4. Chemical Engineering Journal, 2011, 166, 822-831	14.7	17
113	An equilibrium ab initio atomistic thermodynamics study of chlorine adsorption on the Cu(001) surface. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 10306-11	3.6	22
112	Air pollutants formed in thermal decomposition of folpet fungicide under oxidative conditions. <i>Environmental Science & Environmental </i>	10.3	9
111	Chlorination of the Cu(110) Surface and Copper Nanoparticles: A Density Functional Theory Study. Journal of Physical Chemistry C, 2011 , 115, 13412-13419	3.8	24
110	Quantum chemical study of copper (II) chloride and the Deacon reaction. <i>Chemical Physics Letters</i> , 2011 , 501, 215-220	2.5	11
109	Toxic pollutants emitted from thermal decomposition of phthalimide compounds. <i>Journal of Hazardous Materials</i> , 2011 , 187, 407-12	12.8	6
108	Formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) in oxidation of captan pesticide. <i>Proceedings of the Combustion Institute</i> , 2011 , 33, 701-708	5.9	20
107	Theoretical study of unimolecular decomposition of catechol. <i>Journal of Physical Chemistry A</i> , 2010 , 114, 1060-7	2.8	41
106	Effect of Methanol on the Gas-Phase Reaction of Trifluoromethane with Methane. <i>Industrial & Engineering Chemistry Research</i> , 2010 , 49, 8406-8414	3.9	10
105	Thermal decomposition of captan and formation pathways of toxic air pollutants. <i>Environmental Science & Environmental Science</i>	10.3	14
104	Synthesis of Vinylidene Fluoride via Reaction of Chlorodifluoromethane (HCFC-22) with Methane. <i>Industrial & Engineering Chemistry Research</i> , 2010 , 49, 6010-6019	3.9	5
103	Theoretical study of the ammonia-hypochlorous acid reaction mechanism. <i>Journal of Physical Chemistry A</i> , 2010 , 114, 2597-606	2.8	35
102	Theoretical study on the thermodynamic properties and self-decomposition of methylbenzenediol isomers. <i>Journal of Physical Chemistry A</i> , 2010 , 114, 11751-60	2.8	4
101	Thermochemical properties and decomposition pathways of three isomeric semiquinone radicals. <i>Journal of Physical Chemistry A</i> , 2010 , 114, 1098-108	2.8	33
100	Interaction of Chlorine and Oxygen with the Cu(100) Surface. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 19048-19054	3.8	17
99	Catalytic pyrolysis of CHF3 over activated carbon and activated carbon supported potassium catalyst. <i>Journal of Fluorine Chemistry</i> , 2010 , 131, 698-703	2.1	14

98	Conversion of a CFCs, HFCs and HCFCs waste mixture via reaction with methane. <i>Journal of Hazardous Materials</i> , 2010 , 184, 696-703	12.8	6
97	Experimental and chemical kinetic study of the pyrolysis of trifluoroethane and the reaction of trifluoromethane with methane. <i>Journal of Fluorine Chemistry</i> , 2010 , 131, 751-760	2.1	35
96	Conversion of CHF(3) to CH(2)CF(2) via reaction with CH(4) in the presence of CBrF(3): An experimental and kinetic modelling study. <i>Journal of Hazardous Materials</i> , 2010 , 180, 181-7	12.8	18
95	A DFT study on the self-coupling reactions of the three isomeric semiquinone radicals. <i>Computational and Theoretical Chemistry</i> , 2010 , 958, 106-115		6
94	Electronic, optical and bonding properties of MgCO3. <i>Solid State Communications</i> , 2010 , 150, 848-851	1.6	31
93	Adsorption of 2-chlorophenol on Cu2O(111) L uCUS: A first-principles density functional study. <i>Applied Surface Science</i> , 2010 , 256, 4764-4770	6.7	6
92	Bimetallic CoNi/Al2O3 catalyst for propane dry reforming: Estimation of reaction metrics from longevity runs. <i>Chemical Engineering Science</i> , 2010 , 65, 66-73	4.4	25
91	Theoretical study of reactions of HO2 in low-temperature oxidation of benzene. <i>Combustion and Flame</i> , 2010 , 157, 1325-1330	5.3	16
90	A first-principles density functional study of chlorophenol adsorption on Cu2O(110):CuO. <i>Journal of Chemical Physics</i> , 2009 , 130, 184505	3.9	25
89	Three-Dimensional Numerical Study on Flames. Chemical Product and Process Modeling, 2009, 4,	1.1	1
88	Mechanisms for formation, chlorination, dechlorination and destruction of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). <i>Progress in Energy and Combustion Science</i> , 2009 , 35, 245-274	33.6	338
87	Conversion of wood pyrolysates to PCDD/F. <i>Proceedings of the Combustion Institute</i> , 2009 , 32, 665-671	5.9	14
86	Pyrolysis of permethrin and formation of precursors of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) under non-oxidative conditions. <i>Chemosphere</i> , 2009 , 74, 1435-43	8.4	25
85	Experimental and Kinetic Studies of Gas-phase Pyrolysis of n-C4F10. <i>Industrial & Engineering Chemistry Research</i> , 2008 , 47, 2579-2584	3.9	16
84	Conversion of CHF3 to CH2=CF2 via reaction with CH4 and CaBr2. <i>Environmental Science & Environmental Science & Technology</i> , 2008 , 42, 5795-9	10.3	21
83	Computational study of the oxidation and decomposition of dibenzofuran under atmospheric conditions. <i>Journal of Physical Chemistry A</i> , 2008 , 112, 6960-7	2.8	25
82	Quantum chemical and kinetic study of formation of 2-chlorophenoxy radical from 2-chlorophenol: unimolecular decomposition and bimolecular reactions with H, OH, Cl, and O2. <i>Journal of Physical Chemistry A</i> , 2008 , 112, 3680-92	2.8	33
81	Adsorption of chlorophenol on the Cu(111) surface: A first-principles density functional theory study. <i>Applied Surface Science</i> , 2008 , 254, 4218-4224	6.7	24

(2006-2008)

80	Modified exponential schemes for convection diffusion problems. <i>Communications in Nonlinear Science and Numerical Simulation</i> , 2008 , 13, 369-379	3.7	1
79	2-Chlorophenol adsorption on Cu(1 0 0): First-principles density functional study. <i>Surface Science</i> , 2008 , 602, 1554-1562	1.8	11
78	Sealability Properties of Fluorine-Free Fire-Fighting Foams (FfreeF). Fire Technology, 2008, 44, 297-309	3	30
77	Influence of CF3I and CBrF3 on MethanolAir and MethaneAir Premixed Flames. <i>Fire Technology</i> , 2008 , 44, 221-237	3	7
76	A Kinetic Study on the Production of Toxic Compounds in Enclosure Fires Under Suppression by Halon Replacement Extinguishing Agents. <i>Asia-Pacific Journal of Chemical Engineering</i> , 2008 , 8, 113-128	}	1
75	Catalytic effect of CuO and other transition metal oxides in formation of dioxins: theoretical investigation of reaction between 2,4,5-trichlorophenol and CuO. <i>Environmental Science & Environmental Science & Technology</i> , 2007 , 41, 5708-15	10.3	32
74	Quantum chemical investigation of formation of polychlorodibenzo-p-dioxins and dibenzofurans from oxidation and pyrolysis of 2-chlorophenol. <i>Journal of Physical Chemistry A</i> , 2007 , 111, 2563-73	2.8	66
73	Formation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/F) in fires of arsenic-free treated wood: role of organic preservatives. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	17
7 ²	Theoretical study of reaction pathways of dibenzofuran and dibenzo-p-dioxin under reducing conditions. <i>Journal of Physical Chemistry A</i> , 2007 , 111, 7133-40	2.8	24
71	Ab initio study of bonding between nucleophilic species and the nitroso group. <i>Journal of Physical Chemistry A</i> , 2007 , 111, 1300-6	2.8	5
70	Elementary reaction step model of the N-nitrosation of ammonia. <i>International Journal of Chemical Kinetics</i> , 2007 , 39, 645-656	1.4	16
69	Theoretical exploration of the potential energy surface of the HOI -rHIO isomerization reaction. <i>Chemical Physics Letters</i> , 2007 , 436, 68-74	2.5	6
68	Nucleophilic reactivity of aniline derivatives towards the nitroso group. <i>Journal of Physical Organic Chemistry</i> , 2007 , 20, 167-179	2.1	14
67	Pressure-Loss Correlations for Designing Foam Proportioning Systems. Fire Technology, 2007, 43, 123-1	44	5
66	Formation of dioxins and furans during combustion of treated wood. <i>Progress in Energy and Combustion Science</i> , 2007 , 33, 384-408	33.6	83
65	The role of extinction on the re-ignition potential of wood-based embers in bushfires. <i>International Journal of Wildland Fire</i> , 2007 , 16, 547	3.2	1
64	Simultaneous conversion of CHClF(2) and CH(3)Br to CH(2)CF(2). Chemosphere, 2007, 68, 2003-6	8.4	9
63	Fire properties of surrogate refuse-derived fuels. Fire and Materials, 2006, 30, 107-130	1.8	3

62	Water-in-oil emulsion foaming by thiourea nitrosation: Reaction and mass transfer. <i>AICHE Journal</i> , 2006 , 52, 1558-1565	3.6	13
61	Ab initio procedure for aqueous-phase pKa calculation: the acidity of nitrous acid. <i>Journal of Physical Chemistry A</i> , 2006 , 110, 11371-6	2.8	88
60	An experimental and kinetic modeling study of the reaction of CHF3 with methane. <i>Environmental Science & Environmental Envi</i>	10.3	26
59	Quantum chemical study of low temperature oxidation mechanism of dibenzofuran. <i>Journal of Physical Chemistry A</i> , 2006 , 110, 13560-7	2.8	26
58	Experimental and Quantum Chemical Study of the Reaction CF2+ CH3<-r@F2CH3-r@H2CF2+ H: A Key Mechanism in the Reaction between Methane and Fluorocarbons. <i>Industrial & Chemistry Research</i> , 2006 , 45, 3758-3762	3.9	14
57	INFLUENCE OF UPSTREAM VERSUS DOWNSTREAM HEAT LOSSON THE STRUCTURE AND STABILITY OF PLANAR PREMIXED BURNER-STABILIZED FLAMES. <i>Combustion Science and Technology</i> , 2006 , 178, 1373-1410	1.5	4
56	An experimental and theoretical study of the nitrosation of ammonia and thiourea. <i>Chemical Engineering Science</i> , 2006 , 61, 3186-3197	4.4	19
55	The asymptotic structure of premixed tubular flames. <i>Combustion and Flame</i> , 2006 , 144, 838-849	5.3	4
54	A review of CFC and halon treatment technologies I The nature and role of catalysts. <i>Catalysis Surveys From Asia</i> , 2006 , 10, 40-54	2.8	23
53	Experimental and computational studies of the gas-phase reaction of halon 1211 with hydrogen. <i>Environmental Science & Environmental &</i>	10.3	9
52	Effect of added nucleophilic species on the rate of primary amino acid nitrosation. <i>Journal of the American Chemical Society</i> , 2005 , 127, 3664-5	16.4	27
51	Gas-Phase and Pd-Catalyzed Hydrodehalogenation of CBrClF2, CCl2F2, CHClF2, and CH2F2. <i>Industrial & Engineering Chemistry Research</i> , 2005 , 44, 3442-3452	3.9	12
50	Experimental and computational studies of the thermal decomposition of halon 1211. <i>International Journal of Chemical Kinetics</i> , 2005 , 37, 134-146	1.4	12
49	PCDD/F formation in flaming combustion, smoldering, and oxidative pyrolysis of aco-friendly treated wood. <i>Proceedings of the Combustion Institute</i> , 2005 , 30, 1237-1243	5.9	18
48	COMPUTATIONAL STUDY ON TOXIC GASES RELEASED FROM COMPARTMENT FIRES SUPPRESSED WITH HALOGENATED AGENTS. <i>Cybernetics and Systems</i> , 2004 , 35, 607-625	1.9	1
47	Catalytic hydrodehalogenation of halon 1211 (CBrClF2) over 🗟 lumina-supported Ni, Pd and Pt catalysts. <i>Catalysis Today</i> , 2004 , 88, 183-194	5.3	9
46	Conversion of halon 1211 (CBrClF2) over supported Pd catalysts. <i>Catalysis Today</i> , 2004 , 97, 205-215	5.3	12
45	Performance of a Co-Ni catalyst for propane reforming under low steam-to-carbon ratios. <i>Chemical Engineering Journal</i> , 2004 , 102, 119-130	14.7	64

(2002-2004)

44	Integrated Kinetic and Thermodynamic Model Describing the Nitrosation of Aniline and Its Derivatives under Reaction- and Encounter-Controlled Conditions. <i>Industrial & Engineering Chemistry Research</i> , 2004 , 43, 2296-2301	3.9	8
43	Catalytic hydrodehalogenation of halon 1211 (CBrClF2) over carbon-supported palladium catalysts. <i>Applied Catalysis B: Environmental</i> , 2003 , 44, 253-261	21.8	12
42	Analysis of the mechanism of the low-temperature oxidation of coal. <i>Combustion and Flame</i> , 2003 , 134, 107-117	5.3	131
41	Coal oxidation at low temperatures: oxygen consumption, oxidation products, reaction mechanism and kinetic modelling. <i>Progress in Energy and Combustion Science</i> , 2003 , 29, 487-513	33.6	466
40	Catalytic Process for the Conversion of Halon 1211 (CBrClF2) to Halon 1301 (CBrF3) and CFC 13 (CClF3). <i>Industrial & Engineering Chemistry Research</i> , 2003 , 42, 6000-6006	3.9	3
39	Pathways for Production of CO2 and CO in Low-Temperature Oxidation of Coal. <i>Energy & Description</i> 2003, 17, 150-158	4.1	88
38	Assessing influence of experimental parameters on formation of PCDD/F from ash derived from fires of CCA-treated wood. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	16
37	Increased PCDD/F formation in the bottom ash from fires of CCA-treated wood. <i>Chemosphere</i> , 2003 , 50, 1261-3	8.4	15
36	Gas-phase reaction of CCl2F2 (CFC-12) with methane. Chemosphere, 2003, 53, 1189-91	8.4	15
35	Role of inherent water in low-temperature oxidation of coal. <i>Combustion Science and Technology</i> , 2003 , 175, 253-270	1.5	43
34	Short Communication: application of a surrogate material in assessing the impact of porosity on re-ignition of wood-based materials. <i>Fire and Materials</i> , 2002 , 26, 99-101	1.8	
33	Zeolite catalysts for Halon conversion. <i>Journal of Molecular Catalysis A</i> , 2002 , 181, 63-72		12
32	Inert hydrocarbon-based refrigerants. Fire Safety Journal, 2002, 37, 53-65	3.3	4
31	Emission of polyaromatic hydrocarbons, polychlorinated biphenyls and polychlorinated dibenzo-p-dioxins and furans from fires of wood chips. <i>Fire Safety Journal</i> , 2002 , 37, 659-672	3.3	28
30	Thermal decomposition of solid oxygenated complexes formed by coal oxidation at low temperatures. <i>Fuel</i> , 2002 , 81, 1913-1923	7.1	79
29	Kinetic modeling of low-temperature oxidation of coal. <i>Combustion and Flame</i> , 2002 , 131, 452-464	5.3	7 ²
28	Oxygen consumption by a bituminous coal: Time dependence of the rate of oxygen consumption. <i>Combustion Science and Technology</i> , 2002 , 174, 165-185	1.5	15
27	Nucleophilic Catalysis of Nitrosation: Relationship between Nitrosating Agent Equilibrium Constant and Catalyst Nucleophilicity. <i>Journal of Chemical Research</i> , 2002 , 2002, 589-590	0.6	14

26	Examination of CO2, CO, and H2O Formation during Low-Temperature Oxidation of a Bituminous Coal. <i>Energy & Documents</i> 2002, 16, 586-592	4.1	55
25	Gas-Phase Reaction of Halon 1301 (CBrF3) with Propane. <i>Industrial & amp; Engineering Chemistry Research</i> , 2002 , 41, 2858-2863	3.9	3
24	Gas-Phase Reaction of Halon 1211 (CBrClF2) with Methane. <i>Industrial & Damp; Engineering Chemistry Research</i> , 2001 , 40, 3139-3143	3.9	18
23	Experimental and computational studies of the pyrolysis of CBrF3, and the reaction of CBrF3 with CH4. <i>Chemical Engineering Science</i> , 2000 , 55, 4067-4078	4.4	18
22	Non-oxidative reaction of CBrF3 with methane over NiZSM-5 and HZSM-5. <i>Catalysis Today</i> , 2000 , 63, 35.	5 5 3 6 2	11
21	Pyrolysis of Halon 1301 over zeolite catalysts. <i>Microporous and Mesoporous Materials</i> , 2000 , 35-36, 219-	23.6	5
20	Effects of Wind Flow on Self-Heating Characteristics of Coal Stockpiles. <i>Chemical Engineering Research and Design</i> , 2000 , 78, 445-453	5.5	39
19	Experimental and Computational Studies on the Gas-Phase Reaction of CBrF3 with Hydrogen. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	16
18	Theoretical analysis of reaction regimes in low-temperature oxidation of coal. <i>Fuel</i> , 1999 , 78, 1073-1087	17.1	70
17	Thermal conductivity detection relative molar response factors for halogenated compounds. Journal of Chromatography A, 1999 , 841, 187-195	4.5	27
16	Catalytic reaction of methane with CBrF3. Chemical Communications, 1999, 709-710	5.8	10
15	A PROCESS FOR DISPOSAL OF HALON 1301 (CBrF3). <i>Chemical Engineering Communications</i> , 1999 , 176, 195-200	2.2	3
14	Gas-Phase Reaction of Halon 1301 (CBrF3) with Methane. <i>Industrial & Damp; Engineering Chemistry Research</i> , 1999 , 38, 3345-3352	3.9	21
13	Experimental Study on Low-Temperature Oxidation of an Australian Coal. <i>Energy & Description</i> , 13, 1173-1179	4.1	50
12	Propagation of Laminar Flames in Wet Premixed Natural Gas-Air Mixtures. <i>Chemical Engineering Research and Design</i> , 1998 , 76, 81-89	5.5	15
11	Effects of the structural properties of solid fuels on their re-ignition characteristics. <i>Fire and Materials</i> , 1998 , 22, 155-165	1.8	12
10	Low-temperature oxidation of coal at elevated pressures. <i>Journal of Loss Prevention in the Process Industries</i> , 1998 , 11, 373-381	3.5	13
9	Adsorption of n-Butane and n-Heptane on 5A Zeolite. <i>Separation Science and Technology</i> , 1998 , 33, 157	1 ₂ 1584	7

LIST OF PUBLICATIONS

8	Conversion of benzene to substituted aromatic products over zeolite catalysts at elevated pressures. <i>Energy & Double State of the Stat</i>	4.1	19
7	Magnitude and origin of the deuterium kinetic isotope effect during methane coupling and related reactions over lithium/magnesium oxide catalysts. <i>The Journal of Physical Chemistry</i> , 1993 , 97, 1445-145	50	18
6	Oxidative dehydrogenation of ethane and the coupling of methane over sodium containing cerium oxides. <i>Applied Catalysis A: General</i> , 1992 , 87, 171-183	5.1	45
5	Isotopic Labelling Studies of the Mechanism of the Catalytic Oxidative Coupling of Methane. <i>Studies in Surface Science and Catalysis</i> , 1991 , 61, 89-95	1.8	4
4	Oxide catalysed reactions of ethylene oxide under conditions relevant to ethylene epoxidation over supported silver. <i>Applied Catalysis</i> , 1991 , 76, 31-48		25
3	The partial oxidation of norbornene over a silver catalyst under steady state conditions. <i>Catalysis Letters</i> , 1991 , 9, 133-143	2.8	7
2	Hydrogen isotope labelling of organic compounds catalysed by microporous aluminophosphates: specificity of tritium gas exchange. <i>Journal of the Chemical Society Chemical Communications</i> , 1988 , 763		3
1	Catalytic Oxidation of Methane Over Alpo4-5 and Metal IDoped Alpo4-5. <i>Studies in Surface Science and Catalysis</i> , 1988 , 36, 389-393	1.8	1