Nerea Iturmendi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1283676/publications.pdf

Version: 2024-02-01

933447 940533 16 340 10 16 citations h-index g-index papers 17 17 17 506 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Influence of phenolic compounds on the sensorial perception and volatility of red wine esters in model solution: An insight at the molecular level. Food Chemistry, 2013, 140, 76-82.	8.2	74
2	Chemical characterization, antioxidant properties and oxygen consumption rate of 36 commercial oenological tannins in a model wine solution. Food Chemistry, 2018, 268, 210-219.	8.2	55
3	Fining of red wines with gluten or yeast extract protein. International Journal of Food Science and Technology, 2010, 45, 200-207.	2.7	31
4	Rosé Wine Fining Using Polyvinylpolypyrrolidone: Colorimetry, Targeted Polyphenomics, and Molecular Dynamics Simulations. Journal of Agricultural and Food Chemistry, 2017, 65, 10591-10597.	5.2	31
5	Transfer of tannin characteristics from grape skins or seeds to wine-like solutions and their impact on potential astringency. LWT - Food Science and Technology, 2015, 63, 667-676.	5.2	25
6	Quantitative analysis of Bordeaux red wine precipitates by solid-state NMR: Role of tartrates and polyphenols. Food Chemistry, 2016, 199, 229-237.	8.2	24
7	Oenococcus oeni Exopolysaccharide Biosynthesis, a Tool to Improve Malolactic Starter Performance. Frontiers in Microbiology, 2018, 9, 1276.	3.5	21
8	Effect of polyvinylpolypyrrolidone treatment on ros \tilde{A} \otimes s wines during fermentation: Impact on color, polyphenols and thiol aromas. Food Chemistry, 2019, 295, 493-498.	8.2	19
9	Influence of high hydrostatic pressure treatments on the physicochemical, microbiological and rheological properties of reconstituted micellar casein concentrates. Food Hydrocolloids, 2020, 106, 105880.	10.7	18
10	Chip electrophoresis as a novel approach to measure the polyphenols reactivity toward human saliva. Electrophoresis, 2014, 35, 1735-1741.	2.4	15
11	Effect of marc pressing and geographical area on Sangiovese wine quality. LWT - Food Science and Technology, 2020, 118, 108728.	5.2	10
12	A new method for monitoring the extracellular proteolytic activity of wine yeasts during alcoholic fermentation of grape must. Journal of Microbiological Methods, 2015, 119, 176-179.	1.6	7
13	The colloidal stabilization of young red wine by Acacia senegal gum: The involvement of the protein backbone from the protein-rich arabinogalactan-proteins. Food Hydrocolloids, 2019, 97, 105176.	10.7	5
14	Evolution of microbial and protein qualities of fractions of milk protein processed by microfiltration. LWT - Food Science and Technology, 2022, 157, 113064.	5.2	2
15	Combined effect of nisin addition and high pressure processing on the stability of liquid micellar casein concentrates. International Dairy Journal, 2022, 130, 105361.	3.0	2
16	Superficial Charge Density of Fining Agents: Influence of pH, Dose, and Temperature. International Journal of Food Properties, 2012, 15, 997-1009.	3.0	1