Na Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1283234/publications.pdf

Version: 2024-02-01

		304602	526166
29	3,185	22	27
papers	citations	h-index	g-index
0.7		2-	40.46
35	35	35	4046
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	An Accelerated Modular-Orthogonal Ni-Catalyzed Methodology to Symmetric and Nonsymmetric Constitutional Isomeric AB ₂ to AB ₉ Dendrons Exhibiting Unprecedented Self-Organizing Principles. Journal of the American Chemical Society, 2021, 143, 17724-17743.	6.6	25
2	Synthesis of Alternating Donor–Acceptor Ladderâ€Type Molecules and Investigation of Their Multiple Chargeâ€Transfer Pathways. Angewandte Chemie, 2018, 130, 6552-6558.	1.6	7
3	Synthesis of Alternating Donor–Acceptor Ladderâ€Type Molecules and Investigation of Their Multiple Chargeâ€Transfer Pathways. Angewandte Chemie - International Edition, 2018, 57, 6442-6448.	7.2	54
4	Enhancement in Open-Circuit Voltage in Organic Solar Cells by Using Ladder-Type Nonfullerene Acceptors. ACS Applied Materials & Interfaces, 2018, 10, 13528-13533.	4.0	28
5	Frontispiz: Synthesis of Alternating Donor–Acceptor Ladderâ€Type Molecules and Investigation of Their Multiple Chargeâ€Transfer Pathways. Angewandte Chemie, 2018, 130, .	1.6	O
6	Frontispiece: Molecular Design towards Controlling Charge Transport. Chemistry - A European Journal, 2018, 24, .	1.7	0
7	Frontispiece: Synthesis of Alternating Donor–Acceptor Ladderâ€Type Molecules and Investigation of Their Multiple Chargeâ€Transfer Pathways. Angewandte Chemie - International Edition, 2018, 57, .	7.2	1
8	Exploration of Syntheses and Functions of Higher Ladder-type π-Conjugated Heteroacenes. CheM, 2018, 4, 2538-2570.	5.8	85
9	Molecular Design towards Controlling Charge Transport. Chemistry - A European Journal, 2018, 24, 17180-17187.	1.7	2
10	Propeller-Shaped Acceptors for High-Performance Non-Fullerene Solar Cells: Importance of the Rigidity of Molecular Geometry. Chemistry of Materials, 2017, 29, 1127-1133.	3.2	83
11	A Singleâ€Molecular AND Gate Operated with Two Orthogonal Switching Mechanisms. Advanced Materials, 2017, 29, 1701248.	11.1	41
12	Molecular Rectification Tuned by Through-Space Gating Effect. Nano Letters, 2017, 17, 308-312.	4. 5	56
13	Two Photon Absorption Study of Low-Bandgap, Fully Conjugated Perylene Diimide-Thienoacene-Perylene Diimide Ladder-Type Molecules. Chemistry of Materials, 2017, 29, 6726-6732.	3.2	55
14	Controlled Self-Assembly of Cyclophane Amphiphiles: From 1D Nanofibers to Ultrathin 2D Topological Structures. Macromolecules, 2016, 49, 5172-5178.	2.2	11
15	Exceptional Single-Molecule Transport Properties of Ladder-Type Heteroacene Molecular Wires. Journal of the American Chemical Society, 2016, 138, 10630-10635.	6.6	76
16	Beyond Molecular Wires: Design Molecular Electronic Functions Based on Dipolar Effect. Accounts of Chemical Research, 2016, 49, 1852-1863.	7.6	60
17	Donor–Acceptor Porous Conjugated Polymers for Photocatalytic Hydrogen Production: The Importance of Acceptor Comonomer. Macromolecules, 2016, 49, 6903-6909.	2.2	129
18	Rational Design of Porous Conjugated Polymers and Roles of Residual Palladium for Photocatalytic Hydrogen Production. Journal of the American Chemical Society, 2016, 138, 7681-7686.	6.6	364

#	Article	IF	CITATIONS
19	NillCl(1-Naphthyl)(PCy3)2, An Air-Stable $\ddot{l}f$ -Nill Precatalyst for Quantitative Cross-Coupling of Aryl Câ \in "O Electrophiles with Aryl Neopentylglycolboronates. Synthesis, 2016, 48, 2808-2815.	1.2	20
20	An Indefinitely Air-Stable $\ddot{l}f$ -Nill Precatalyst for Quantitative Cross-Coupling of Unreactive Aryl Halides and Mesylates with Aryl Neopentylglycolboronates. Synthesis, 2016, 48, 2795-2807.	1.2	30
21	Proton-triggered switch based on a molecular transistor with edge-on gate. Chemical Science, 2016, 7, 3137-3141.	3.7	45
22	Air-Stable Nickel Precatalysts for Fast and Quantitative Cross-Coupling of Aryl Sulfamates with Aryl Neopentylglycolboronates at Room Temperature. Organic Letters, 2014, 16, 6326-6329.	2.4	56
23	Single Electron Transfer in Radical Ion and Radical-Mediated Organic, Materials and Polymer Synthesis. Chemical Reviews, 2014, 114, 5848-5958.	23.0	367
24	Nickel Catalyzed Cross-Coupling of Aryl C–O Based Electrophiles with Aryl Neopentylglycolboronates. Journal of Organic Chemistry, 2012, 77, 1018-1025.	1.7	89
25	trans-Chloro(1-Naphthyl)bis(triphenylphosphine)nickel(II)/PCy3Catalyzed Cross-Coupling of Aryl and Heteroaryl Neopentylglycolboronates with Aryl and Heteroaryl Mesylates and Sulfamates at Room Temperature. Journal of Organic Chemistry, 2012, 77, 2885-2892.	1.7	66
26	Comparison of Arylboron-Based Nucleophiles in Ni-Catalyzed Suzuki–Miyaura Cross-Coupling with Aryl Mesylates and Sulfamates. Journal of Organic Chemistry, 2012, 77, 5956-5964.	1.7	74
27	Nickel-Catalyzed Cross-Couplings Involving Carbonâ^Oxygen Bonds. Chemical Reviews, 2011, 111, 1346-1416.	23.0	1,212
28	Ni(COD) ₂ /PCy ₃ Catalyzed Cross-Coupling of Aryl and Heteroaryl Neopentylglycolboronates with Aryl and Heteroaryl Mesylates and Sulfamates in THF at Room Temperature. Journal of Organic Chemistry, 2011, 76, 9946-9955.	1.7	88
29	Zero-Valent Metals Accelerate the Neopentylglycolborylation of Aryl Halides Catalyzed by NiCl ₂ -Based Mixed-Ligand Systems. Journal of Organic Chemistry, 2010, 75, 7822-7828.	1.7	61