Xiaojun Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1283217/publications.pdf

Version: 2024-02-01

567281 642732 1,176 24 15 23 citations h-index g-index papers 24 24 24 1450 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Strategy of Stabilization via Active Energy-Exchange for Bistable Electrochromic Displays. CCS Chemistry, 2022, 4, 2757-2767.	7.8	15
2	Multiâ€Component Collaborative Stepâ€byâ€Step Coloring Strategy to Achieve Highâ€Performance Lightâ€Responsive Colorâ€Switching. Advanced Science, 2022, 9, e2103309.	11.2	15
3	CO ₂ to Formic Acid Using Cu–Sn on Laser-Induced Graphene. ACS Applied Materials & Interfaces, 2020, 12, 41223-41229.	8.0	48
4	A full battery system of pre-lithiated phosphorus/sulfurized pyrolyzed poly(acrylonitrile) with an effective electrolyte and improved safety. Green Chemistry, 2020, 22, 4252-4258.	9.0	20
5	Metal Phthalocyanine-Derived Single-Atom Catalysts for Selective CO ₂ Electroreduction under High Current Densities. ACS Applied Materials & Interfaces, 2020, 12, 33795-33802.	8.0	35
6	Charge Storage Mechanism of a Quinone Polymer Electrode for Zinc-ion Batteries. Journal of the Electrochemical Society, 2020, 167, 070558.	2.9	24
7	Highly stretchable electrochromic hydrogels for use in wearable electronic devices. Journal of Materials Chemistry C, 2019, 7, 9481-9486.	5.5	38
8	A multicolour bistable electronic shelf label based on intramolecular proton-coupled electron transfer. Nature Materials, 2019, 18, 1335-1342.	27.5	161
9	Revealing the hidden performance of metal phthalocyanines for CO2 reduction electrocatalysis by hybridization with carbon nanotubes. Nano Research, 2019, 12, 2330-2334.	10.4	72
10	Photoâ€/Basoâ€Chromisms and the Application of a Dualâ€Addressable Molecular Switch. Chemistry - an Asian Journal, 2019, 14, 2838-2845.	3.3	9
11	Three primary color (cyan/magenta/yellow) switchable electrochromic devices based on PEDOT:PSS and â€~electrobase/electroacid' theory. New Journal of Chemistry, 2019, 43, 8410-8413.	2.8	11
12	Simple and general platform for highly adjustable thermochromic fluorescent materials and multi-feasible applications. Materials Horizons, 2019, 6, 1654-1662.	12.2	48
13	Bio-inspired ultra-high energy efficiency bistable electronic billboard and reader. Nature Communications, 2019, 10, 1559.	12.8	96
14	A Multiâ€Stimuliâ€Responsive Oxazine Molecular Switch: A Strategy for the Design of Electrochromic Materials. Chemistry - an Asian Journal, 2018, 13, 1206-1212.	3.3	14
15	Uncovering the Circular Polarization Potential of Chiral Photonic Cellulose Films for Photonic Applications. Advanced Materials, 2018, 30, e1705948.	21.0	264
16	Single probe giving different signals towards reactive oxygen species and nitroxyl. Dyes and Pigments, 2018, 148, 348-352.	3.7	7
17	Circularly Polarized Luminescent Carbon Dot Nanomaterials of Helical Superstructures for Circularly Polarized Light Detection. Advanced Optical Materials, 2018, 6, 1801246.	7. 3	105
18	Reversible Bond/Cation-Coupled Electron Transfer on Phenylenediamine-Based Rhodamine B and Its Application on Electrochromism. ACS Applied Materials & Samp; Interfaces, 2017, 9, 20196-20204.	8.0	16

#	Article	IF	CITATION
19	An RGB color-tunable turn-on electrofluorochromic device and its potential for information encryption. Chemical Communications, 2017, 53, 11209-11212.	4.1	60
20	A methyl ketone bridged molecule as a multi-stimuli-responsive color switch for electrochromic devices. Journal of Materials Chemistry C, 2016, 4, 4662-4667.	5.5	11
21	A single-molecule multicolor electrochromic device generated through medium engineering. Light: Science and Applications, 2015, 4, e249-e249.	16.6	56
22	Cross polarization effect of donor-acceptor group on a potential single-molecule transistor. Journal of Physical Organic Chemistry, 2014, 27, 834-840.	1.9	0
23	Highly durable colour/emission switching of fluorescein in a thin film device using "electro-acid/base―as in situ stimuli. Chemical Communications, 2014, 50, 1420.	4.1	38
24	Bio-inspired enol-degradation for multipurpose oxygen sensing. Chemical Communications, 2014, 50, 13477-13480.	4.1	13