Xiaojun Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1283217/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Uncovering the Circular Polarization Potential of Chiral Photonic Cellulose Films for Photonic Applications. Advanced Materials, 2018, 30, e1705948.	21.0	264
2	A multicolour bistable electronic shelf label based on intramolecular proton-coupled electron transfer. Nature Materials, 2019, 18, 1335-1342.	27.5	161
3	Circularly Polarized Luminescent Carbon Dot Nanomaterials of Helical Superstructures for Circularly Polarized Light Detection. Advanced Optical Materials, 2018, 6, 1801246.	7.3	105
4	Bio-inspired ultra-high energy efficiency bistable electronic billboard and reader. Nature Communications, 2019, 10, 1559.	12.8	96
5	Revealing the hidden performance of metal phthalocyanines for CO2 reduction electrocatalysis by hybridization with carbon nanotubes. Nano Research, 2019, 12, 2330-2334.	10.4	72
6	An RGB color-tunable turn-on electrofluorochromic device and its potential for information encryption. Chemical Communications, 2017, 53, 11209-11212.	4.1	60
7	A single-molecule multicolor electrochromic device generated through medium engineering. Light: Science and Applications, 2015, 4, e249-e249.	16.6	56
8	Simple and general platform for highly adjustable thermochromic fluorescent materials and multi-feasible applications. Materials Horizons, 2019, 6, 1654-1662.	12.2	48
9	CO ₂ to Formic Acid Using Cu–Sn on Laser-Induced Graphene. ACS Applied Materials & Interfaces, 2020, 12, 41223-41229.	8.0	48
10	Highly durable colour/emission switching of fluorescein in a thin film device using "electro-acid/base―as in situ stimuli. Chemical Communications, 2014, 50, 1420.	4.1	38
11	Highly stretchable electrochromic hydrogels for use in wearable electronic devices. Journal of Materials Chemistry C, 2019, 7, 9481-9486.	5.5	38
12	Metal Phthalocyanine-Derived Single-Atom Catalysts for Selective CO ₂ Electroreduction under High Current Densities. ACS Applied Materials & Interfaces, 2020, 12, 33795-33802.	8.0	35
13	Charge Storage Mechanism of a Quinone Polymer Electrode for Zinc-ion Batteries. Journal of the Electrochemical Society, 2020, 167, 070558.	2.9	24
14	A full battery system of pre-lithiated phosphorus/sulfurized pyrolyzed poly(acrylonitrile) with an effective electrolyte and improved safety. Green Chemistry, 2020, 22, 4252-4258.	9.0	20
15	Reversible Bond/Cation-Coupled Electron Transfer on Phenylenediamine-Based Rhodamine B and Its Application on Electrochromism. ACS Applied Materials & Interfaces, 2017, 9, 20196-20204.	8.0	16
16	A Strategy of Stabilization via Active Energy-Exchange for Bistable Electrochromic Displays. CCS Chemistry, 2022, 4, 2757-2767.	7.8	15
17	Multiâ€Component Collaborative Stepâ€byâ€5tep Coloring Strategy to Achieve Highâ€Performance Lightâ€Responsive Colorâ€6witching. Advanced Science, 2022, 9, e2103309.	11.2	15
18	A Multiâ€Stimuliâ€Responsive Oxazine Molecular Switch: A Strategy for the Design of Electrochromic Materials. Chemistry - an Asian Journal, 2018, 13, 1206-1212.	3.3	14

XIAOJUN WANG

#	Article	IF	CITATIONS
19	Bio-inspired enol-degradation for multipurpose oxygen sensing. Chemical Communications, 2014, 50, 13477-13480.	4.1	13
20	A methyl ketone bridged molecule as a multi-stimuli-responsive color switch for electrochromic devices. Journal of Materials Chemistry C, 2016, 4, 4662-4667.	5.5	11
21	Three primary color (cyan/magenta/yellow) switchable electrochromic devices based on PEDOT:PSS and â€~electrobase/electroacid' theory. New Journal of Chemistry, 2019, 43, 8410-8413.	2.8	11
22	Photoâ€/Basoâ€Chromisms and the Application of a Dualâ€Addressable Molecular Switch. Chemistry - an Asian Journal, 2019, 14, 2838-2845.	3.3	9
23	Single probe giving different signals towards reactive oxygen species and nitroxyl. Dyes and Pigments, 2018, 148, 348-352.	3.7	7
24	Cross polarization effect of donor-acceptor group on a potential single-molecule transistor. Journal of Physical Organic Chemistry, 2014, 27, 834-840.	1.9	0