## **Raquel Osorio**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1283045/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                        | lF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Reversal of Compromised Bonding to Oxidized Etched Dentin. Journal of Dental Research, 2001, 80,<br>1919-1924.                                                                                                                 | 5.2 | 253       |
| 2  | Limited Decalcification/Diffusion of Self-adhesive Cements into Dentin. Journal of Dental Research, 2008, 87, 974-979.                                                                                                         | 5.2 | 232       |
| 3  | Reversal of Compromised Bonding in Bleached Enamel. Journal of Dental Research, 2002, 81, 477-481.                                                                                                                             | 5.2 | 206       |
| 4  | Influence of surface treatments and resin cement selection on bonding to densely-sintered zirconium-oxide ceramic. Dental Materials, 2009, 25, 172-179.                                                                        | 3.5 | 183       |
| 5  | Bonding to Er-YAG-laser-treated Dentin. Journal of Dental Research, 2002, 81, 119-122.                                                                                                                                         | 5.2 | 160       |
| 6  | Influence of different surface treatments on surface zirconia frameworks. Journal of Dentistry, 2009,<br>37, 891-897.                                                                                                          | 4.1 | 152       |
| 7  | Effect of simulated pulpal pressure on dentin permeability and adhesion of self-etch adhesives. Dental<br>Materials, 2007, 23, 705-713.                                                                                        | 3.5 | 144       |
| 8  | Effect of water aging on microtensile bond strength of dual-cured resin cements to pre-treated sintered zirconium-oxide ceramics. Dental Materials, 2009, 25, 392-399.                                                         | 3.5 | 143       |
| 9  | Sorption and solubility of resin-based restorative dental materials. Journal of Dentistry, 2003, 31, 43-50.                                                                                                                    | 4.1 | 139       |
| 10 | Microleakage of composite restorations after acid or Er-YAG laser cavity treatments. Dental<br>Materials, 2001, 17, 340-346.                                                                                                   | 3.5 | 138       |
| 11 | Self-Etching Adhesives Increase Collagenolytic Activity in Radicular Dentin. Journal of Endodontics, 2006, 32, 862-868.                                                                                                        | 3.1 | 138       |
| 12 | Effect of dentin etching and chlorhexidine application on metalloproteinaseâ€mediated collagen<br>degradation. European Journal of Oral Sciences, 2011, 119, 79-85.                                                            | 1.5 | 132       |
| 13 | Durability of resin–dentin bonds: Effects of direct/indirect exposure and storage media. Dental<br>Materials, 2007, 23, 885-892.                                                                                               | 3.5 | 128       |
| 14 | Zinc reduces collagen degradation in demineralized human dentin explants. Journal of Dentistry, 2011,<br>39, 148-153.                                                                                                          | 4.1 | 126       |
| 15 | Surface Treatments for Improving Bond Strength to Prefabricated Fiber Posts: A Literature Review.<br>Operative Dentistry, 2008, 33, 346-355.                                                                                   | 1.2 | 113       |
| 16 | Therapeutic effects of novel resin bonding systems containing bioactive glasses on mineral-depleted<br>areas within the bonded-dentine interface. Journal of Materials Science: Materials in Medicine, 2012,<br>23, 1521-1532. | 3.6 | 111       |
| 17 | Microtensile bond strength of total-etch and self-etching adhesives to caries-affected dentine.<br>Journal of Dentistry, 2003, 31, 469-477.                                                                                    | 4.1 | 104       |
| 18 | Histomorphologic characterization and bond strength evaluation of caries-affected dentin/resin interfaces: Effects of long-term water exposure. Dental Materials, 2008, 24, 786-798.                                           | 3.5 | 101       |

| #  | Article                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Acid-etching and Hydration Influence on Dentin Roughness and Wettability. Journal of Dental<br>Research, 1999, 78, 1554-1559.                                                                                   | 5.2  | 98        |
| 20 | Effect of simulated pulpal pressure on self-adhesive cements bonding to dentin. Dental Materials, 2008, 24, 1156-1163.                                                                                          | 3.5  | 94        |
| 21 | Effect of temperature on the silane coupling agents when bonding core resin to quartz fiber posts.<br>Dental Materials, 2006, 22, 1024-1028.                                                                    | 3.5  | 93        |
| 22 | Influence of self-etching primer on the resin adhesion to enamel and dentin. American Journal of Dentistry, 2001, 14, 205-10.                                                                                   | 0.1  | 93        |
| 23 | Spatially resolved photopolymerization kinetics and oxygen inhibition in dental adhesives.<br>Biomaterials, 2005, 26, 1809-1817.                                                                                | 11.4 | 92        |
| 24 | Effect of curing protocol on the polymerization of dual-cured resin cements. Dental Materials, 2010, 26, 710-718.                                                                                               | 3.5  | 86        |
| 25 | Zinc-Inhibited MMP-Mediated Collagen Degradation after Different Dentine Demineralization Procedures. Caries Research, 2012, 46, 201-207.                                                                       | 2.0  | 86        |
| 26 | Resistance of ten contemporary adhesives to resin–dentine bond degradation. Journal of Dentistry,<br>2008, 36, 163-169.                                                                                         | 4.1  | 83        |
| 27 | EDTA Treatment Improves Resin-Dentin Bonds' Resistance to Degradation. Journal of Dental Research,<br>2005, 84, 736-740.                                                                                        | 5.2  | 81        |
| 28 | Immobilization of a phosphonated analog of matrix phosphoproteins within cross-linked collagen as a templating mechanism for biomimetic mineralization. Acta Biomaterialia, 2011, 7, 268-277.                   | 8.3  | 81        |
| 29 | Morphological analysis of three zirconium oxide ceramics: Effect of surface treatments. Dental<br>Materials, 2010, 26, 751-760.                                                                                 | 3.5  | 77        |
| 30 | A Zn-doped etch-and-rinse adhesive may improve the mechanical properties and the integrity at the bonded-dentin interface. Dental Materials, 2013, 29, e142-e152.                                               | 3.5  | 76        |
| 31 | Influence of phosphoproteins' biomimetic analogs on remineralization of mineral-depleted<br>resin–dentin interfaces created with ion-releasing resin-based systems. Dental Materials, 2015, 31,<br>759-777.     | 3.5  | 76        |
| 32 | Non-destructive analysis in cultural heritage buildings: Evaluating the Mallorca cathedral supporting structures. NDT and E International, 2013, 59, 40-47.                                                     | 3.7  | 75        |
| 33 | Polymerization efficacy of simplified adhesive systems studied by NMR and MRI techniques. Dental<br>Materials, 2006, 22, 963-972.                                                                               | 3.5  | 73        |
| 34 | Microhardness of superficial and deep sound human dentin. Journal of Biomedical Materials Research<br>Part B, 2003, 66A, 850-853.                                                                               | 3.1  | 71        |
| 35 | A ZnO-doped adhesive reduced collagen degradation favouring dentine remineralization. Journal of Dentistry, 2012, 40, 756-765.                                                                                  | 4.1  | 71        |
| 36 | EDTA or H3PO4/NaOCl dentine treatments may increase hybrid layers' resistance to degradation: A<br>microtensile bond strength and confocal-micropermeability study. Journal of Dentistry, 2009, 37,<br>279-288. | 4.1  | 69        |

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Effect of acid etching and collagen removal on dentin wettability and roughness. , 1999, 47, 198-203.                                                                                                                |     | 68        |
| 38 | The dentine remineralization activity of a desensitizing bioactive glassâ€containing toothpaste: an <i>in vitro</i> study. Australian Dental Journal, 2011, 56, 372-381.                                             | 1.5 | 68        |
| 39 | Dental composites reinforced with hydroxyapatite: Mechanical behavior and absorption/elution characteristics. Journal of Biomedical Materials Research Part B, 2001, 56, 297-305.                                    | 3.1 | 67        |
| 40 | Hydrolytic stability of experimental hydroxyapatite-filled dental composite materials. Dental<br>Materials, 2003, 19, 478-486.                                                                                       | 3.5 | 67        |
| 41 | Differential expression of matrix metalloproteinase-2 in human coronal and radicular sound and carious dentine. Journal of Dentistry, 2010, 38, 635-640.                                                             | 4.1 | 66        |
| 42 | Dentin wetting by four adhesive systems. Dental Materials, 2001, 17, 526-532.                                                                                                                                        | 3.5 | 64        |
| 43 | Microtensile bond strength of several adhesive systems to different dentin depths. American Journal of Dentistry, 2003, 16, 292-8.                                                                                   | 0.1 | 64        |
| 44 | Dentin regional bond strength of self-etch and total-etch adhesive systems. Dental Materials, 2007, 23,<br>1542-1548.                                                                                                | 3.5 | 63        |
| 45 | Influence of the hydrostatic pulpal pressure on droplets formation in current etch-and-rinse and self-etch adhesives: A video rate/TSM microscopy and fluid filtration study. Dental Materials, 2009, 25, 1392-1402. | 3.5 | 63        |
| 46 | Effect of the hydration on the biomechanical properties in a fibrinâ€agarose tissueâ€like model. Journal<br>of Biomedical Materials Research - Part A, 2014, 102, 2573-2582.                                         | 4.0 | 63        |
| 47 | Microleakage of Class V resin-modified glass ionomer and compomer restorations. Journal of Prosthetic Dentistry, 1999, 81, 610-615.                                                                                  | 2.8 | 62        |
| 48 | Resin–dentin bonds to EDTA-treated vs. acid-etched dentin using ethanol wet-bonding. Dental<br>Materials, 2010, 26, 368-379.                                                                                         | 3.5 | 62        |
| 49 | Differential effect ofin vitro degradation on resin–dentin bonds produced by self-etchversus<br>total-etch adhesives. Journal of Biomedical Materials Research - Part A, 2006, 77A, 128-135.                         | 4.0 | 60        |
| 50 | Zinc-doped dentin adhesive for collagen protection at the hybrid layer. European Journal of Oral<br>Sciences, 2011, 119, 401-410.                                                                                    | 1.5 | 60        |
| 51 | Evaluation of two Bis-GMA analogues as potential monomer diluents to improve the mechanical properties of light-cured composite resins. Dental Materials, 2005, 21, 823-830.                                         | 3.5 | 59        |
| 52 | Microleakage and interfacial morphology of self-etching adhesives in class V resin composite restorations. Journal of Biomedical Materials Research Part B, 2003, 66B, 399-409.                                      | 3.1 | 58        |
| 53 | Dentin treatment effects on the bonding performance of selfâ€∎dhesive resin cements. European Journal of Oral Sciences, 2010, 118, 80-86.                                                                            | 1.5 | 58        |
| 54 | Experimental Resin Cements Containing Bioactive Fillers Reduce Matrix Metalloproteinase–mediated Dentin CollagenÂDegradation. Journal of Endodontics, 2012, 38, 1227-1232.                                           | 3.1 | 58        |

| #  | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Hydrolytic stability of composite repair bond. European Journal of Oral Sciences, 2007, 115, 417-424.                                                                                                             | 1.5 | 56        |
| 56 | Primary dentin etching time, bond strength and ultra-structure characterization of dentin surfaces.<br>Journal of Dentistry, 2010, 38, 222-231.                                                                   | 4.1 | 56        |
| 57 | Zinc Induces Apatite and Scholzite Formation during Dentin Remineralization. Caries Research, 2014, 48, 276-290.                                                                                                  | 2.0 | 55        |
| 58 | Magnesium phosphate cements for endodontic applications with improved longâ€ŧerm sealing ability.<br>International Endodontic Journal, 2014, 47, 127-139.                                                         | 5.0 | 54        |
| 59 | Bioactive Polymeric Nanoparticles for Periodontal Therapy. PLoS ONE, 2016, 11, e0166217.                                                                                                                          | 2.5 | 53        |
| 60 | Ethanol Wet-bonding Technique Sensitivity Assessed by AFM. Journal of Dental Research, 2010, 89,<br>1264-1269.                                                                                                    | 5.2 | 52        |
| 61 | Dynamic contact angle and spreading rate measurements for the characterization of the effect of dentin surface treatments. Journal of Colloid and Interface Science, 2003, 263, 162-169.                          | 9.4 | 50        |
| 62 | Influence of drying time and temperature on bond strength of contemporary adhesives to dentine.<br>Journal of Dentistry, 2009, 37, 315-320.                                                                       | 4.1 | 50        |
| 63 | Effect of thermal cycling on the bond strength of self-adhesive cements to fiber posts. Clinical Oral<br>Investigations, 2012, 16, 909-915.                                                                       | 3.0 | 50        |
| 64 | Effect of sodium hypochlorite on dentin bonding with a polyalkenoic acid-containing adhesive system.<br>Journal of Biomedical Materials Research Part B, 2002, 60, 316-324.                                       | 3.1 | 49        |
| 65 | Bleaching Agents Increase Metalloproteinases-mediated Collagen Degradation in Dentin. Journal of Endodontics, 2011, 37, 1668-1672.                                                                                | 3.1 | 49        |
| 66 | Effect of Cyclic Loading on the Microtensile Bond Strengths of Total-etch and Self-etch Adhesives.<br>Operative Dentistry, 2006, 31, 25-32.                                                                       | 1.2 | 48        |
| 67 | Remineralisation properties of innovative light-curable resin-based dental materials containing bioactive micro-fillers. Journal of Materials Chemistry B, 2013, 1, 2624.                                         | 5.8 | 48        |
| 68 | Novel light-curable materials containing experimental bioactive micro-fillers remineralise<br>mineral-depleted bonded-dentine interfaces. Journal of Biomaterials Science, Polymer Edition, 2013, 24,<br>940-956. | 3.5 | 48        |
| 69 | Polymer Nanocarriers for Dentin Adhesion. Journal of Dental Research, 2014, 93, 1258-1263.                                                                                                                        | 5.2 | 47        |
| 70 | Improved reactive nanoparticles to treat dentin hypersensitivity. Acta Biomaterialia, 2018, 72, 371-380.                                                                                                          | 8.3 | 47        |
| 71 | Bond strength of orthodontic brackets using different light and self-curing cements. Angle<br>Orthodontist, 2003, 73, 56-63.                                                                                      | 2.4 | 46        |
| 72 | Bioactivity of zinc-doped dental adhesives. Journal of Dentistry, 2014, 42, 403-412.                                                                                                                              | 4.1 | 44        |

| #  | Article                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Tensile strength and microhardness of treated human dentin. Dental Materials, 2004, 20, 522-529.                                                                                                       | 3.5 | 42        |
| 74 | Improving the Quality of the Quartz Fiber Postcore Bond Using Sodium Ethoxide Etching and Combined Silane/Adhesive Coupling. Journal of Endodontics, 2006, 32, 447-451.                                | 3.1 | 42        |
| 75 | In vitro vertical misfit evaluation of cast frameworks for cement-retained implant-supported partial prostheses. Journal of Dentistry, 2009, 37, 52-58.                                                | 4.1 | 42        |
| 76 | Dentin treatment with MMPs inhibitors does not alter bond strengths to caries-affected dentin.<br>Journal of Dentistry, 2008, 36, 1068-1073.                                                           | 4.1 | 40        |
| 77 | Integrated near-surface geophysical survey of the Cathedral of Mallorca. Journal of Archaeological Science, 2009, 36, 1289-1299.                                                                       | 2.4 | 40        |
| 78 | Surface Roughness Analysis of Fiber Post Conditioning Processes. Journal of Dental Research, 2008,<br>87, 186-190.                                                                                     | 5.2 | 39        |
| 79 | Resistance to degradation of resin–dentin bonds using a one-step HEMA-free adhesive. Journal of Dentistry, 2007, 35, 181-186.                                                                          | 4.1 | 38        |
| 80 | Bracket bonding with 15- or 60-second etching and adhesive remaining on enamel after debonding.<br>Angle Orthodontist, 1999, 69, 45-8.                                                                 | 2.4 | 38        |
| 81 | Assessment of the quality of resin–dentin bonded interfaces: An AFM nano-indentation, μTBS and confocal ultramorphology study. Dental Materials, 2012, 28, 622-631.                                    | 3.5 | 37        |
| 82 | lons-modified nanoparticles affect functional remineralization and energy dissipation through the resin-dentin interface. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 68, 62-79. | 3.1 | 37        |
| 83 | Antibacterial effects of polymeric PolymP-n Active nanoparticles. An in vitro biofilm study. Dental<br>Materials, 2019, 35, 156-168.                                                                   | 3.5 | 37        |
| 84 | An ultra-morphological characterization of collagen-depleted etched dentin. American Journal of Dentistry, 1999, 12, 250-5.                                                                            | 0.1 | 37        |
| 85 | Load cycling enhances bioactivity at the resin–dentin interface. Dental Materials, 2014, 30, e169-e188.                                                                                                | 3.5 | 35        |
| 86 | The effect of surface treatments on the microroughness of laserâ€sintered and vacuum ast base metal alloys for dental prosthetic frameworks. Microscopy Research and Technique, 2012, 75, 1206-1212.   | 2.2 | 34        |
| 87 | Differential Biodegradation Kinetics of Collagen Membranes for Bone Regeneration. Polymers, 2020, 12, 1290.                                                                                            | 4.5 | 34        |
| 88 | Effect of load cycling andin vitro degradation on resin-dentin bonds using a self-etching primer.<br>Journal of Biomedical Materials Research - Part A, 2005, 72A, 399-408.                            | 4.0 | 33        |
| 89 | Effects of adhesive systems and luting agents on bonding of fiber posts to root canal dentin. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2006, 77B, 195-200.              | 3.4 | 33        |
| 90 | Effect of the flavonoid epigallocatechin-3-gallate on resin-dentin bond strength. Journal of Adhesive<br>Dentistry, 2013, 15, 535-40.                                                                  | 0.5 | 33        |

| #   | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Increases in Dentin-bond Strength If Doubling Application Time of an Acetone-containing One-step<br>Adhesive. Operative Dentistry, 2007, 32, 133-137.                                                    | 1.2 | 32        |
| 92  | Self-etching zinc-doped adhesives improve the potential of caries-affected dentin to be functionally remineralized. Biointerphases, 2015, 10, 031002.                                                    | 1.6 | 32        |
| 93  | Zinc-modified nanopolymers improve the quality of resin–dentin bonded interfaces. Clinical Oral<br>Investigations, 2016, 20, 2411-2420.                                                                  | 3.0 | 31        |
| 94  | Contact angle hysteresis on dentin surfaces measured with ADSA on drops and bubbles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 206, 469-483.                               | 4.7 | 30        |
| 95  | Resistance to degradation of resin-modified glass-ionomer cements dentine bonds. Journal of Dentistry, 2009, 37, 342-347.                                                                                | 4.1 | 30        |
| 96  | Effect of different surface treatments on In-Ceram Alumina roughness. An AFM study. Journal of Dentistry, 2010, 38, 118-122.                                                                             | 4.1 | 30        |
| 97  | Efficacy of local antibiotic therapy in the treatment of peri-implantitis: A systematic review and meta-analysis. Journal of Dentistry, 2021, 113, 103790.                                               | 4.1 | 30        |
| 98  | Microhardness of acid-treated and resin infiltrated human dentine. Journal of Dentistry, 2005, 33, 349-354.                                                                                              | 4.1 | 29        |
| 99  | In vitro load-induced dentin collagen-stabilization against MMPs degradation. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 27, 10-18.                                               | 3.1 | 29        |
| 100 | Resin–dentin bonds to EDTA-treated vs. acid-etched dentin using ethanol wet-bonding. Part II: Effects<br>of mechanical cycling load on microtensile bond strengths. Dental Materials, 2011, 27, 563-572. | 3.5 | 28        |
| 101 | Novel potential scaffold for periodontal tissue engineering. Clinical Oral Investigations, 2017, 21, 2695-2707.                                                                                          | 3.0 | 28        |
| 102 | Optical properties of non-stoichiometric SiO2 as a function of excess silicon content and thermal treatments. Thin Solid Films, 1995, 270, 114-117.                                                      | 1.8 | 27        |
| 103 | Effect of bacterial collagenase on resin–dentin bonds degradation. Journal of Materials Science:<br>Materials in Medicine, 2007, 18, 2355-2361.                                                          | 3.6 | 26        |
| 104 | Modified Polymeric Nanoparticles Exert In Vitro Antimicrobial Activity Against Oral Bacteria.<br>Materials, 2018, 11, 1013.                                                                              | 2.9 | 26        |
| 105 | Hybrid layers of etch-and-rinse versus self-etching adhesive systems. Medicina Oral, Patologia Oral Y<br>Cirugia Bucal, 2009, 15, e112-e118.                                                             | 1.7 | 25        |
| 106 | Novel non-resorbable polymeric-nanostructured scaffolds for guided bone regeneration. Clinical Oral Investigations, 2020, 24, 2037-2049.                                                                 | 3.0 | 25        |
| 107 | State of the Art on Biomaterials for Soft Tissue Augmentation in the Oral Cavity. Part I: Natural Polymers-Based Biomaterials. Polymers, 2020, 12, 1850.                                                 | 4.5 | 25        |
| 108 | Doxycycline and Zinc Loaded Silica-Nanofibrous Polymers as Biomaterials for Bone Regeneration.<br>Polymers, 2020, 12, 1201.                                                                              | 4.5 | 25        |

| #   | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Influence of dentin acid-etching and NaOCI-treatment on bond strengths of self-etch adhesives.<br>American Journal of Dentistry, 2008, 21, 44-8.                                                                   | 0.1 | 25        |
| 110 | In vitro mechanical stimulation promoted remineralization at the resin/dentin interface. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 30, 61-74.                                              | 3.1 | 24        |
| 111 | Polymeric nanoparticles for endodontic therapy. Journal of the Mechanical Behavior of Biomedical<br>Materials, 2020, 103, 103606.                                                                                  | 3.1 | 24        |
| 112 | Testing active membranes for bone regeneration: A review. Journal of Dentistry, 2021, 105, 103580.                                                                                                                 | 4.1 | 24        |
| 113 | Polymeric nanoparticles protect the resin-dentin bonded interface from cariogenic biofilm degradation. Acta Biomaterialia, 2020, 111, 316-326.                                                                     | 8.3 | 24        |
| 114 | Effect of Double Layering and Prolonged Application Time on MTBS of Water/Ethanol-based Self-etch<br>Adhesives to Dentin. Operative Dentistry, 2009, 34, 571-577.                                                  | 1.2 | 23        |
| 115 | Zinc Incorporation Improves Biological ActivityÂofÂBeta-tricalciumÂSilicate Resin–based Cement. Journal<br>of Endodontics, 2014, 40, 1840-1845.                                                                    | 3.1 | 23        |
| 116 | Zn-doping of silicate and hydroxyapatite-based cements: Dentin mechanobiology and bioactivity.<br>Journal of the Mechanical Behavior of Biomedical Materials, 2021, 114, 104232.                                   | 3.1 | 23        |
| 117 | Influence of NaOCl deproteinization on shear bond strength in function of dentin depth. American<br>Journal of Dentistry, 2002, 15, 252-5.                                                                         | 0.1 | 23        |
| 118 | Sorption and solubility testing of orthodontic bonding cements in different solutions. Journal of<br>Biomedical Materials Research - Part B Applied Biomaterials, 2006, 76B, 251-256.                              | 3.4 | 21        |
| 119 | Novel light-cured resins and composites with improved physicochemical properties. Dental Materials, 2007, 23, 1189-1198.                                                                                           | 3.5 | 21        |
| 120 | Work of fracture of a composite resin: Fractureâ€ŧoughening mechanisms. Journal of Biomedical<br>Materials Research - Part A, 2009, 89A, 751-758.                                                                  | 4.0 | 21        |
| 121 | Differential bonds degradation of two resin-modified glass-ionomer cements in primary and permanent teeth. Journal of Dentistry, 2009, 37, 857-864.                                                                | 4.1 | 21        |
| 122 | In Vitro Biodegradation Pattern of Collagen Matrices for Soft Tissue Augmentation. Polymers, 2021, 13, 2633.                                                                                                       | 4.5 | 21        |
| 123 | Evaluation of the micro-mechanical strength of resin bonded–dentin interfaces submitted to<br>short-term degradation strategies. Journal of the Mechanical Behavior of Biomedical Materials, 2012,<br>15, 112-120. | 3.1 | 20        |
| 124 | Remineralization of mechanical loaded resin–dentin interface: a transitional and synchronized multistep process. Biomechanics and Modeling in Mechanobiology, 2014, 13, 1289-1302.                                 | 2.8 | 20        |
| 125 | Polyaspartic acid enhances dentine remineralization bonded with a zincâ€doped Portlandâ€based resin<br>cement. International Endodontic Journal, 2016, 49, 874-883.                                                | 5.0 | 20        |
| 126 | Adjunctive use of an anti-oxidant agent to improve resistance of hybrid layers to degradation. Journal of Dentistry, 2011, 39, 80-87.                                                                              | 4.1 | 19        |

| #   | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Bond Strength and Bioactivity of Zn-Doped Dental Adhesives Promoted by Load Cycling. Microscopy and Microanalysis, 2015, 21, 214-230.                                                                                                    | 0.4 | 19        |
| 128 | Functional and molecular structural analysis of dentine interfaces promoted by a Zn-doped<br>self-etching adhesive and an in vitro load cycling model. Journal of the Mechanical Behavior of<br>Biomedical Materials, 2015, 50, 131-149. | 3.1 | 19        |
| 129 | Antimicrobial effect of nanostructured membranes for guided tissue regeneration: an in vitro study.<br>Dental Materials, 2020, 36, 1566-1577.                                                                                            | 3.5 | 19        |
| 130 | Effect of the hydration status of the smear layer on the wettability and bond strength of a self-etching primer to dentin. American Journal of Dentistry, 2004, 17, 310-4.                                                               | 0.1 | 19        |
| 131 | Differential Resin-Dentin Bonds Created after Caries Removal with Polymer Burs. Microscopy and Microanalysis, 2012, 18, 497-508.                                                                                                         | 0.4 | 18        |
| 132 | Resistance to bond degradation between dual-cure resin cements and pre-treated sintered CAD-CAM dental ceramics. Medicina Oral, Patologia Oral Y Cirugia Bucal, 2012, 17, e669-e677.                                                     | 1.7 | 18        |
| 133 | Effect of in vitro chewing and bruxism events on remineralization, at the resin–dentin interface.<br>Journal of Biomechanics, 2015, 48, 14-21.                                                                                           | 2.1 | 18        |
| 134 | Advanced zinc-doped adhesives for high performance at the resin-carious dentin interface. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 62, 247-267.                                                                 | 3.1 | 18        |
| 135 | Hydroxyapatite-based cements induce different apatite formation in radicular dentin. Dental<br>Materials, 2020, 36, 167-178.                                                                                                             | 3.5 | 18        |
| 136 | Polymeric zinc-doped nanoparticles for high performance in restorative dentistry. Journal of Dentistry, 2021, 107, 103616.                                                                                                               | 4.1 | 18        |
| 137 | Collagen Matrix vs. Autogenous Connective Tissue Graft for Soft Tissue Augmentation: A Systematic<br>Review and Meta-Analysis. Polymers, 2021, 13, 1810.                                                                                 | 4.5 | 18        |
| 138 | MMPs activity and bond strength in deciduous dentine–resin bonded interfaces. Journal of Dentistry, 2013, 41, 549-555.                                                                                                                   | 4.1 | 17        |
| 139 | Ex vivo investigations on bioinspired electrospun membranes as potential biomaterials for bone regeneration. Journal of Dentistry, 2020, 98, 103359.                                                                                     | 4.1 | 17        |
| 140 | Effect of dentin deproteinization on microleakage of Class V composite restorations. Operative Dentistry, 2000, 25, 497-504.                                                                                                             | 1.2 | 17        |
| 141 | Early dentine remineralisation: Morpho-mechanical assessment. Journal of Dentistry, 2014, 42, 384-394.                                                                                                                                   | 4.1 | 16        |
| 142 | Doxycyclineâ€functionalized polymeric nanoparticles inhibit <i>Enterococcus faecalis</i> biofilm formation on dentine. International Endodontic Journal, 2021, 54, 413-426.                                                              | 5.0 | 16        |
| 143 | Sealing effectiveness of etch-and-rinse vs self-etching adhesives after water aging: influence of acid etching and NaOCl dentin pretreatment. Journal of Adhesive Dentistry, 2008, 10, 183-8.                                            | 0.5 | 16        |
| 144 | Resistance to Degradation of Resin-Dentin Bonds Produced by One-Step Self-Etch Adhesives.<br>Microscopy and Microanalysis, 2012, 18, 1480-1493.                                                                                          | 0.4 | 15        |

| #   | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Surface Microanalysis and Chemical Imaging of Early Dentin Remineralization. Microscopy and Microanalysis, 2014, 20, 245-256.                                                                                                            | 0.4 | 15        |
| 146 | Doxycycline-doped membranes induced osteogenic gene expression on osteoblastic cells. Journal of Dentistry, 2021, 109, 103676.                                                                                                           | 4.1 | 15        |
| 147 | The Collagen Origin Influences the Degradation Kinetics of Guided Bone Regeneration Membranes.<br>Polymers, 2021, 13, 3007.                                                                                                              | 4.5 | 15        |
| 148 | Influence of application parameters on bond strength of an "all in one―water-based self-etching<br>primer/adhesive after 6 and 12 months of water aging. Odontology / the Society of the Nippon Dental<br>University, 2010, 98, 117-125. | 1.9 | 14        |
| 149 | Effect of water contamination on the shear bond strength of five orthodontic adhesives. Medicina<br>Oral, Patologia Oral Y Cirugia Bucal, 2010, 15, e820-e826.                                                                           | 1.7 | 14        |
| 150 | Sealing properties of one-step root-filling fibre post-obturators vs. two-step delayed fibre post-placement. Journal of Dentistry, 2010, 38, 547-552.                                                                                    | 4.1 | 14        |
| 151 | Novel Polymeric Nanocarriers Reduced Zinc and Doxycycline Toxicity in the Nematode Caenorhabditis elegans. Antioxidants, 2019, 8, 550.                                                                                                   | 5.1 | 14        |
| 152 | Doxycycline-Doped Polymeric Membranes Induced Growth, Differentiation and Expression of Antigenic<br>Phenotype Markers of Osteoblasts. Polymers, 2021, 13, 1063.                                                                         | 4.5 | 14        |
| 153 | Microleakage and SEM interfacial micromorphology of amalgam restorations using three adhesive systems. Journal of Dentistry, 2000, 28, 423-428.                                                                                          | 4.1 | 13        |
| 154 | Children's dental anxiety: influence of personality and intelligence factors. International Journal of<br>Paediatric Dentistry, 1995, 5, 23-28.                                                                                          | 1.8 | 13        |
| 155 | <i>Ex vivo</i> detection and characterization of remineralized carious dentin, by nanoindentation<br>and single point Raman spectroscopy, after amalgam restoration. Journal of Raman Spectroscopy, 2017,<br>48, 384-392.                | 2.5 | 13        |
| 156 | Silver improves collagen structure and stability at demineralized dentin: A dynamic-mechanical and<br>Raman analysis. Journal of Dentistry, 2018, 79, 61-67.                                                                             | 4.1 | 13        |
| 157 | Zn-containing polymer nanogels promote cervical dentin remineralization. Clinical Oral Investigations, 2019, 23, 1197-1208.                                                                                                              | 3.0 | 13        |
| 158 | Zn-Containing Membranes for Guided Bone Regeneration in Dentistry. Polymers, 2021, 13, 1797.                                                                                                                                             | 4.5 | 13        |
| 159 | In Vitro Hydrolytic Degradation of Composite Quartz Fiber-post Bonds Created by Hydrophilic Silane<br>Couplings. Operative Dentistry, 2006, 31, 728-733.                                                                                 | 1.2 | 12        |
| 160 | Zinc and silica are active components to efficiently treat in vitro simulated eroded dentin. Clinical<br>Oral Investigations, 2018, 22, 2859-2870.                                                                                       | 3.0 | 12        |
| 161 | A zinc oxide-modified hydroxyapatite-based cement favored sealing ability in endodontically treated teeth. Journal of Dentistry, 2019, 88, 103162.                                                                                       | 4.1 | 12        |
| 162 | The mineralizing effect of zinc oxide-modified hydroxyapatite-based sealer on radicular dentin.<br>Clinical Oral Investigations, 2020, 24, 285-299.                                                                                      | 3.0 | 12        |

| #   | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Alveolar Bone Ridge Augmentation Using Polymeric Membranes: A Systematic Review and Meta-Analysis.<br>Polymers, 2021, 13, 1172.                                                                           | 4.5 | 12        |
| 164 | Post silanization improves bond strength of translucent posts to flowable composite resins. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2007, 82B, 320-324.                   | 3.4 | 11        |
| 165 | Effect of alloy type and casting technique on the fracture strength of implant-cemented structures.<br>Medicina Oral, Patologia Oral Y Cirugia Bucal, 2011, 16, e619-e625.                                | 1.7 | 11        |
| 166 | Bonding efficacy of an acetone/based etch-and-rinse adhesive after dentin deproteinization. Medicina<br>Oral, Patologia Oral Y Cirugia Bucal, 2012, 17, e649-e654.                                        | 1.7 | 11        |
| 167 | Differential nanofiller cluster formations in dental adhesive systems. Microscopy Research and Technique, 2012, 75, 749-757.                                                                              | 2.2 | 11        |
| 168 | A zinc chloride-doped adhesive facilitates sealing at the dentin interface: A confocal laser microscopy study. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 74, 35-42.               | 3.1 | 11        |
| 169 | Antibiotic-Loaded Polymeric Barrier Membranes for Guided Bone/Tissue Regeneration: A Mini-Review.<br>Polymers, 2022, 14, 840.                                                                             | 4.5 | 11        |
| 170 | ElectroBond application may improve wetting characteristics of etched dentine. Journal of Dentistry, 2011, 39, 180-186.                                                                                   | 4.1 | 10        |
| 171 | Characterization of Micro- and Nanophase Separation of Dentin Bonding Agents by Stereoscopy and Atomic Force Microscopy. Microscopy and Microanalysis, 2012, 18, 279-288.                                 | 0.4 | 10        |
| 172 | Microanalysis of Thermal-Induced Changes at the Resin–Dentin Interface. Microscopy and<br>Microanalysis, 2014, 20, 1218-1233.                                                                             | 0.4 | 10        |
| 173 | On modeling and nanoanalysis of caries-affected dentin surfaces restored with Zn-containing amalgam and in vitro oral function. Biointerphases, 2015, 10, 041004.                                         | 1.6 | 10        |
| 174 | A zinc oxideâ€modified hydroxyapatiteâ€based cement facilitated new crystallineâ€stoichiometric and<br>amorphous apatite precipitation on dentine. International Endodontic Journal, 2017, 50, e109-e119. | 5.0 | 10        |
| 175 | Influence of laboratory degradation methods and bonding application parameters on microTBS of self-etch adhesives to dentin. American Journal of Dentistry, 2011, 24, 103-8.                              | 0.1 | 10        |
| 176 | Effect of zinc-doping in physicochemical properties of dental adhesives. American Journal of Dentistry, 2015, 28, 292-6.                                                                                  | 0.1 | 10        |
| 177 | Treating Gingival Recessions Using Coronally Advanced Flap or Tunnel Techniques with Autografts or<br>Polymeric Substitutes: A Systematic Review and Meta-Analysis. Polymers, 2022, 14, 1453.             | 4.5 | 10        |
| 178 | Short-term changes in lymphocytes after placement of silver amalgam restorations in healthy subjects. Dental Materials, 1995, 11, 323-326.                                                                | 3.5 | 9         |
| 179 | Effect of cyclic loading on bonding of fiber posts to root canal dentin. Journal of Biomedical<br>Materials Research - Part B Applied Biomaterials, 2008, 86B, 264-269.                                   | 3.4 | 9         |
| 180 | Nanoscopic dynamic mechanical analysis of resin–infiltrated dentine, under in vitro chewing and bruxism events. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 54, 33-47.              | 3.1 | 9         |

| #   | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Assessing bone quality through mechanical properties in postmenopausal trabecular bone. Injury, 2018, 49, S3-S10.                                                                                         | 1.7 | 9         |
| 182 | Biochemical assessment of nanostructures in human trabecular bone: Proposal of a Raman microspectroscopy based measurements protocol. Injury, 2018, 49, S11-S21.                                          | 1.7 | 9         |
| 183 | State of the Art on Biomaterials for Soft Tissue Augmentation in the Oral Cavity. Part II: Synthetic Polymers-Based Biomaterials. Polymers, 2020, 12, 1845.                                               | 4.5 | 9         |
| 184 | Melatonin-doped polymeric nanoparticles reinforce and remineralize radicular dentin:<br>Morpho-histological, chemical and biomechanical studies. Dental Materials, 2021, 37, 1107-1120.                   | 3.5 | 9         |
| 185 | Comparison of Bond Stability Between Dual-Cure Resin Cements and Pretreated Glass-Infiltrated Alumina Ceramics. Photomedicine and Laser Surgery, 2011, 29, 465-475.                                       | 2.0 | 8         |
| 186 | Surface Analysis of Conditioned Dentin and Resin–Dentin Bond Strength. Journal of Adhesion Science<br>and Technology, 2012, 26, 27-40.                                                                    | 2.6 | 8         |
| 187 | Mechanical and chemical characterisation of demineralised human dentine after amalgam restorations. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 47, 65-76.                          | 3.1 | 8         |
| 188 | Nanostructure in the trabecular bone of postmenopausal women: Mechanical and chemical analysis.<br>Injury, 2017, 48, S26-S33.                                                                             | 1.7 | 8         |
| 189 | Ionâ€modified nanoparticles induce different apatite formation in cervical dentine. International<br>Endodontic Journal, 2018, 51, 1019-1029.                                                             | 5.0 | 8         |
| 190 | In vitro mechanical stimulation facilitates stress dissipation and sealing ability at the conventional glass ionomer cement-dentin interface. Journal of Dentistry, 2018, 73, 61-69.                      | 4.1 | 8         |
| 191 | Effect of adhesive systems and surface treatment of methacrylate resin-based fiber posts on post-resin-dentin bonds. American Journal of Dentistry, 2007, 20, 231-4.                                      | 0.1 | 8         |
| 192 | One-step self-etching adhesive polymerization: Influence of a self-curing activator. Journal of Dentistry, 2009, 37, 616-621.                                                                             | 4.1 | 7         |
| 193 | Wetting ability of an acetone/based etch rinse adhesive after NaOCl-treatment. Medicina Oral,<br>Patologia Oral Y Cirugia Bucal, 2012, 17, e644-e648.                                                     | 1.7 | 7         |
| 194 | Zinc-Containing Restorations Create Amorphous Biogenic Apatite at the Carious Dentin Interface: A<br>X-Ray Diffraction (XRD) Crystal Lattice Analysis. Microscopy and Microanalysis, 2016, 22, 1034-1046. | 0.4 | 7         |
| 195 | Submicron-to-nanoscale structure characterization and organization of crystals in dentin bioapatites. RSC Advances, 2016, 6, 45265-45278.                                                                 | 3.6 | 7         |
| 196 | Protein adsorption and bioactivity of functionalized electrospun membranes for bone regeneration.<br>Journal of Dentistry, 2020, 102, 103473.                                                             | 4.1 | 7         |
| 197 | Antibacterial Effect of Functionalized Polymeric Nanoparticles on Titanium Surfaces Using an In Vitro Subgingival Biofilm Model. Polymers, 2022, 14, 358.                                                 | 4.5 | 7         |
| 198 | Resistance to thermo-mechanical stress of different coupling agents used as intermediate layer in resin-fiber post bonds. American Journal of Dentistry, 2007, 20, 416-20.                                | 0.1 | 7         |

| #   | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | New Advanced Materials for High Performance at the Resin-Dentine Interface. Frontiers of Oral<br>Biology, 2015, 17, 39-48.                                                                                           | 1.5 | 7         |
| 200 | Polymerization kinetics and mechanical characterization of new formulations of light-cured dental sealants. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2007, 80B, 18-24.                | 3.4 | 6         |
| 201 | Ultra-structure characterization of self-etching treated cementum surfaces. Medicina Oral,<br>Patologia Oral Y Cirugia Bucal, 2011, 16, e265-e270.                                                                   | 1.7 | 6         |
| 202 | A novel bioactive agent improves adhesion of resin-modified glass-ionomer to dentin. Journal of Adhesion Science and Technology, 2015, 29, 1543-1552.                                                                | 2.6 | 6         |
| 203 | SEM and AFM characterization of surface of two RMGICs for degradation before and after modification with bioactive glass ceramic. Journal of Adhesion Science and Technology, 2016, 30, 621-632.                     | 2.6 | 6         |
| 204 | Digital image analysis method to assess the performance of conventional and self-limiting concepts in dentine caries removal. Journal of Dentistry, 2013, 41, e31-e38.                                               | 4.1 | 5         |
| 205 | Improved Sealing and Remineralization at the Resin-Dentin Interface After Phosphoric Acid Etching and Load Cycling. Microscopy and Microanalysis, 2015, 21, 1530-1548.                                               | 0.4 | 5         |
| 206 | Mechanical loading influences the viscoelastic performance of the resin-carious dentin complex.<br>Biointerphases, 2017, 12, 021001.                                                                                 | 1.6 | 5         |
| 207 | Effect of functionalized PHEMA micro―and nanoâ€particles on the viscoelastic properties of<br>fibrin–agarose biomaterials. Journal of Biomedical Materials Research - Part A, 2018, 106, 738-745.                    | 4.0 | 5         |
| 208 | Stored potential energy increases and elastic properties alterations are produced after restoring dentin with Zn-containing amalgams. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 91, 109-121. | 3.1 | 5         |
| 209 | Influence of enamel prophylaxis on wettability of three commercially available orthophosphoric acids. , 1996, 33, 269-274.                                                                                           |     | 4         |
| 210 | Bond Strength of an Etch-and-Rinse Adhesive to KrF Excimer Laser-Treated Dentin. Photomedicine and<br>Laser Surgery, 2010, 28, 97-102.                                                                               | 2.0 | 4         |
| 211 | Efficacy and micro-characterization of pathophysiological events on caries-affected dentin treated with glass-ionomer cements. International Journal of Adhesion and Adhesives, 2016, 69, 91-109.                    | 2.9 | 4         |
| 212 | Oral Function Improves Interfacial Integrity and Sealing Ability Between Conventional Glass Ionomer Cements and Dentin. Microscopy and Microanalysis, 2017, 23, 131-144.                                             | 0.4 | 4         |
| 213 | Melatonin-doped polymeric nanoparticles induce high crystalline apatite formation in root dentin.<br>Dental Materials, 2021, 37, 1698-1713.                                                                          | 3.5 | 4         |
| 214 | Novel Pastes Containing Polymeric Nanoparticles for Dentin Hypersensitivity Treatment: An In Vitro<br>Study. Nanomaterials, 2021, 11, 3150.                                                                          | 4.1 | 4         |
| 215 | Zn-containing Adhesives Facilitate Collagen Protection and Remineralization at the Resin-Dentin Interface: A Narrative Review. Polymers, 2022, 14, 642.                                                              | 4.5 | 4         |
| 216 | Bond strength and nanoroughness assessment on human pretreated cementum surfaces. Journal of Dentistry, 2010, 38, 678-685.                                                                                           | 4.1 | 3         |

| #   | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Effect of Etching Time on Resin-Primary Dentin Adhesion and Degradation of Interfaces. Journal of Adhesion Science and Technology, 2012, 26, 1053-1067.                                                  | 2.6 | 3         |
| 218 | Masticatory function induced changes, at subnanostructural level, in proteins and mineral at the resin–dentine interface. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 39, 197-209. | 3.1 | 3         |
| 219 | Silver-loaded nanoparticles affect ex-vivo mechanical behavior and mineralization of dentin. Medicina<br>Oral, Patologia Oral Y Cirugia Bucal, 2019, 24, 0-0.                                            | 1.7 | 3         |
| 220 | Determining efficacy of monitoring devices on ceramic bond to resin composite. Medicina Oral,<br>Patologia Oral Y Cirugia Bucal, 2012, 17, e833-e840.                                                    | 1.7 | 2         |
| 221 | Biomaterials for catalysed mineralization of dental hard tissues. , 2016, , 365-376.                                                                                                                     |     | 2         |
| 222 | A zinc-doped endodontic cement facilitates functional mineralization and stress dissipation at the dentin surface. Medicina Oral, Patologia Oral Y Cirugia Bucal, 2018, 23, 0-0.                         | 1.7 | 2         |
| 223 | Longevity of bonds made by composite and polyacid-modified resins to dentin using a dual-cured adhesive system. American Journal of Dentistry, 2005, 18, 19-22.                                          | 0.1 | 2         |
| 224 | Influence of Surface Nano-roughness of Dental Alumina Ceramic on Bond Strength to Dual-Cure<br>Resin Cements. Journal of Adhesion Science and Technology, 2011, 25, 2909-2922.                           | 2.6 | 1         |
| 225 | Inter-individual gene variants associated with trabecular bone plasticity: A step forward in the personal genomics of degenerative bone disease. Injury, 2017, 48, S12-S25.                              | 1.7 | 1         |
| 226 | A new ISFET technology with back contacts using deep diffusions. Sensors and Actuators B: Chemical, 1997, 40, 155-159.                                                                                   | 7.8 | 0         |
| 227 | Novel Bioadhesives for Restorative Dentistry. Materials Science Forum, 0, 587-588, 682-686.                                                                                                              | 0.3 | 0         |
| 228 | LONGEVITY OF RESIN BONDS TO DENTIN. Journal of Esthetic and Restorative Dentistry, 2009, 21, 348-354.                                                                                                    | 3.8 | 0         |
| 229 | Valutazione della rugosità dello smalto in seguito a trattamenti di air-polishing eseguiti con vetri<br>bioattivi. Prevenzione & Assistenza Dentale, 2011, 37, 123-129.                                  | 0.0 | 0         |