
Liane Marcia Rossi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1282755/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Magnetic nanomaterials in catalysis: advanced catalysts for magnetic separation and beyond. Green Chemistry, 2014, 16, 2906.	4.6	504
2	Glucose oxidase?magnetite nanoparticle bioconjugate for glucose sensing. Analytical and Bioanalytical Chemistry, 2004, 380, 606-613.	1.9	286
3	Catecholase Activity of a Series of Dicopper(II) Complexes with Variable Cuâ^'OH(phenol) Moieties. Inorganic Chemistry, 2002, 41, 1788-1794.	1.9	268
4	Stöber Synthesis of Monodispersed Luminescent Silica Nanoparticles for Bioanalytical Assays. Langmuir, 2005, 21, 4277-4280.	1.6	266
5	The Partial Hydrogenation of Benzene to Cyclohexene by Nanoscale Ruthenium Catalysts in Imidazolium Ionic Liquids. Chemistry - A European Journal, 2004, 10, 3734-3740.	1.7	233
6	Methylene Blue-Containing Silica-Coated Magnetic Particles:  A Potential Magnetic Carrier for Photodynamic Therapy. Langmuir, 2007, 23, 8194-8199.	1.6	208
7	The role and fate of capping ligands in colloidally prepared metal nanoparticle catalysts. Dalton Transactions, 2018, 47, 5889-5915.	1.6	205
8	Recoverable rhodium nanoparticles: Synthesis, characterization and catalytic performance in hydrogenation reactions. Applied Catalysis A: General, 2008, 338, 52-57.	2.2	192
9	Protoporphyrin IX Nanoparticle Carrier: Preparation, Optical Properties, and Singlet Oxygen Generation. Langmuir, 2008, 24, 12534-12538.	1.6	156
10	Superparamagnetic nanoparticle-supported palladium: a highly stable magnetically recoverable and reusable catalyst for hydrogenation reactions. Green Chemistry, 2007, 9, 379.	4.6	146
11	High performance magnetic separation of gold nanoparticles for catalyticoxidation of alcohols. Green Chemistry, 2010, 12, 144-149.	4.6	137
12	Clean preparation of methyl esters in one-step oxidative esterification of primary alcohols catalyzed by supported gold nanoparticles. Green Chemistry, 2009, 11, 1366.	4.6	123
13	Gold–Ligand-Catalyzed Selective Hydrogenation of Alkynes into <i>cis</i> -Alkenes via H ₂ Heterolytic Activation by Frustrated Lewis Pairs. ACS Catalysis, 2017, 7, 2973-2980.	5.5	108
14	Optimizing Active Sites for High CO Selectivity during CO ₂ Hydrogenation over Supported Nickel Catalysts. Journal of the American Chemical Society, 2021, 143, 4268-4280.	6.6	100
15	A single-step procedure for the preparation of palladium nanoparticles and a phosphine-functionalized support as catalyst for Suzuki cross-coupling reactions. Journal of Catalysis, 2010, 276, 382-389.	3.1	94
16	Controlling Reaction Selectivity over Hybrid Plasmonic Nanocatalysts. Nano Letters, 2018, 18, 7289-7297.	4.5	92
17	Magnetic Hyperthermia With Fe\$_{3}\$O\$_{4}\$ Nanoparticles: The Influence of Particle Size on Energy Absorption. IEEE Transactions on Magnetics, 2008, 44, 4444-4447.	1.2	89
18	Accessing Frustrated Lewis Pair Chemistry through Robust Gold@N-Doped Carbon for Selective Hydrogenation of Alkynes, ACS Catalysis, 2018, 8, 3516-3524.	5.5	88

#	Article	IF	CITATIONS
19	Magnetic properties of Fe3O4 nanoparticles coated with oleic and dodecanoic acids. Journal of Applied Physics, 2010, 107, .	1.1	81
20	Synthesis of supported metal nanoparticle catalysts using ligand assisted methods. Nanoscale, 2012, 4, 5826.	2.8	79
21	Ligand-Assisted Preparation of Palladium Supported Nanoparticles: a Step toward Size Control. Inorganic Chemistry, 2009, 48, 4640-4642.	1.9	78
22	Hydrolytic activity of a dinuclear copper(II,II) complex in phosphate diester and DNA cleavage. Inorganica Chimica Acta, 2002, 337, 366-370.	1.2	76
23	Preparation of recoverable Ru catalysts for liquid-phase oxidation and hydrogenation reactions. Applied Catalysis A: General, 2009, 360, 177-182.	2.2	76
24	Insights into the active surface species formed on Ta2O5 nanotubes in the catalytic oxidation of CO. Physical Chemistry Chemical Physics, 2014, 16, 5755.	1.3	76
25	Easy Access to Metallic Copper Nanoparticles with High Activity and Stability for CO Oxidation. ACS Applied Materials & amp; Interfaces, 2015, 7, 7987-7994.	4.0	75
26	Volcano-like Behavior of Au-Pd Core-shell Nanoparticles in the Selective Oxidation of Alcohols. Scientific Reports, 2014, 4, 5766.	1.6	73
27	Selective hydrogenation of CO 2 into CO on a highly dispersed nickel catalyst obtained by magnetron sputtering deposition: A step towards liquid fuels. Applied Catalysis B: Environmental, 2017, 209, 240-246.	10.8	73
28	Magnetic Fluids Based on γ-Fe ₂ O ₃ and CoFe ₂ O ₄ Nanoparticles Dispersed in Ionic Liquids. Journal of Physical Chemistry C, 2009, 113, 8566-8572.	1.5	72
29	On the Use of Ruthenium Dioxide in 1-n-Butyl-3-Methylimidazolium Ionic Liquids as Catalyst Precursor for Hydrogenation Reactions. Catalysis Letters, 2004, 92, 149-155.	1.4	71
30	Synthesis, structure and properties of unsymmetrical μ-alkoxo-dicopper(II) complexes: biological relevance to phosphodiester and DNA cleavage and cytotoxic activity. Inorganica Chimica Acta, 2005, 358, 1807-1822.	1.2	69
31	High performance gold nanorods and silver nanocubes in surface-enhanced Raman spectroscopy of pesticides. Physical Chemistry Chemical Physics, 2009, 11, 7491.	1.3	68
32	Heat generation in agglomerated ferrite nanoparticles in an alternating magnetic field. Journal Physics D: Applied Physics, 2013, 46, 045002.	1.3	68
33	A magnetically recoverable scavenger for palladium based on thiol-modified magnetite nanoparticles. Applied Catalysis A: General, 2007, 330, 139-144.	2.2	67
34	Ruthenium nanoparticles prepared from ruthenium dioxide precursor: Highly active catalyst for hydrogenation of arenes under mild conditions. Journal of Molecular Catalysis A, 2009, 298, 69-73.	4.8	66
35	Aerobic oxidation of monoterpenic alcohols catalyzed by ruthenium hydroxide supported on silica-coated magnetic nanoparticles. Journal of Catalysis, 2011, 282, 209-214.	3.1	64
36	Ruthenium dioxide nanoparticles in ionic liquids: synthesis, characterization and catalytic properties in hydrogenation of olefins and arenes. Journal of the Brazilian Chemical Society, 2004, 15, 901-910.	0.6	63

#	Article	IF	CITATIONS
37	Magnetic nanocatalysts: supported metal nanoparticles for catalytic applications. Nanotechnology Reviews, 2013, 2, 597-614.	2.6	60
38	Oxidation of benzyl alcohol catalyzed by gold nanoparticles under alkaline conditions: weak vs. strong bases. RSC Advances, 2016, 6, 25279-25285.	1.7	59
39	Influence of Support Basic Sites in Green Oxidation of Biobased Substrates Using Au-Promoted Catalysts. ACS Sustainable Chemistry and Engineering, 2018, 6, 16332-16340.	3.2	59
40	Selective oxidation of glucose to glucuronic acid by cesium-promoted gold nanoparticle catalyst. Journal of Molecular Catalysis A, 2016, 422, 35-42.	4.8	55
41	Preparation of supported Pt(0) nanoparticles as efficient recyclable catalysts for hydrogenation of alkenes and ketones. Catalysis Communications, 2009, 10, 1971-1974.	1.6	52
42	Economically attractive route for the preparation of high quality magnetic nanoparticles by the the thermal decomposition of iron(III) acetylacetonate. Nanotechnology, 2017, 28, 115603.	1.3	52
43	Heterodinuclear Fe ^{III} Zn ^{II} -Bioinspired Complex Supported on 3-Aminopropyl Silica. Efficient Hydrolysis of Phosphate Diester Bonds. Inorganic Chemistry, 2010, 49, 2580-2582.	1.9	49
44	Fluorescent silica nanospheres for digital counting bioassay of the breast cancer marker HER2/nue. Biosensors and Bioelectronics, 2006, 21, 1900-1906.	5.3	47
45	Size dependence of the magnetic relaxation and specific power absorption in iron oxide nanoparticles. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	45
46	Organometallic Preparation of Ni, Pd, and NiPd Nanoparticles for the Design of Supported Nanocatalysts. ACS Catalysis, 2014, 4, 1735-1742.	5.5	45
47	Advances in Base-Free Oxidation of Bio-Based Compounds on Supported Gold Catalysts. Catalysts, 2017, 7, 352.	1.6	45
48	Synthesis, Structure, Physicochemical Properties and Catecholase-like Activity of a New Dicopper(II) Complex. Journal of the Brazilian Chemical Society, 2001, 12, 747.	0.6	43
49	Catalyst Recovery and Recycling Facilitated by Magnetic Separation: Iridium and Other Metal Nanoparticles. ChemCatChem, 2012, 4, 698-703.	1.8	43
50	Tuning the Catalytic Activity and Selectivity of Pd Nanoparticles Using Ligand-Modified Supports and Surfaces. ACS Omega, 2017, 2, 6014-6022.	1.6	43
51	Surface effects in the magnetic properties of crystalline 3 nm ferrite nanoparticles chemically synthesized. Journal of Applied Physics, 2010, 108, 103919.	1.1	41
52	Can CO ₂ and Renewable Carbon Be Primary Resources for Sustainable Fuels and Chemicals?. ACS Sustainable Chemistry and Engineering, 2021, 9, 12427-12430.	3.2	41
53	Crystal structure, spectral and magnetic properties of a new (μ-acetate) (μ-alkoxide) dicopper (II) complex as a model for tyrosinase. Inorganica Chimica Acta, 1998, 281, 111-115.	1.2	40
54	On the Stabilization of Gold Nanoparticles over Silicaâ€Based Magnetic Supports Modified with Organosilanes. Chemistry - A European Journal, 2011, 17, 4626-4631.	1.7	39

#	Article	IF	CITATIONS
55	Synthesis, structure and properties of the first dinuclear copper(II) complex as a structural model for the phenolic intermediate in tyrosinase–cresolase activity. Inorganic Chemistry Communication, 1999, 2, 334-337.	1.8	36
56	On the catalytic hydrogenation of polycyclic aromatic hydrocarbons into less toxic compounds by a facile recoverable catalyst. Applied Catalysis B: Environmental, 2009, 90, 688-692.	10.8	35
57	Taking advantage of a terpyridine ligand for the deposition of Pd nanoparticles onto a magnetic material for selective hydrogenation reactions. Journal of Materials Chemistry A, 2013, 1, 1441-1449.	5.2	34
58	Hybrid Metalloporphyrin Magnetic Nanoparticles as Catalysts for Sequential Transformation of Alkenes and CO ₂ into Cyclic Carbonates. ChemCatChem, 2018, 10, 2792-2803.	1.8	34
59	Shaping Effective Practices for Incorporating Sustainability Assessment in Manuscripts Submitted to <i>ACS Sustainable Chemistry & Engineering</i> : Catalysis and Catalytic Processes. ACS Sustainable Chemistry and Engineering, 2021, 9, 4936-4940.	3.2	34
60	Reaction Pathway Dependence in Plasmonic Catalysis: Hydrogenation as a Model Molecular Transformation. Chemistry - A European Journal, 2018, 24, 12330-12339.	1.7	33
61	Magnetically recoverable AuPd nanoparticles prepared by a coordination capture method as a reusable catalyst for green oxidation of benzyl alcohol. Catalysis Science and Technology, 2013, 3, 2993.	2.1	31
62	Biologically Inspired and Magnetically Recoverable Copper Porphyrinic Catalysts: A Greener Approach for Oxidation of Hydrocarbons with Molecular Oxygen. Advanced Functional Materials, 2016, 26, 3359-3368.	7.8	30
63	A new bis(μ-alkoxo) diiron(III) complex and its implications regarding the number of Fe(III)–phenolate bonds and the redox potential in uteroferrin. Dalton Transactions RSC, 2000, , 707-712.	2.3	29
64	Magnetically recoverable copper oxide catalysts for aerobic allylic oxidation of cyclohexene. Journal of Molecular Catalysis A, 2017, 426, 534-541.	4.8	29
65	Ionic liquids as recycling solvents for the synthesis of magnetic nanoparticles. Physical Chemistry Chemical Physics, 2011, 13, 13558.	1.3	28
66	Selective Allylic oxidation of Cyclohexene by a Magnetically Recoverable Cobalt Oxide Catalyst. Catalysis Letters, 2011, 141, 432-437.	1.4	28
67	Tracking iron oxide nanoparticles in plant organs using magnetic measurements. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	28
68	Magnetic Ionic Liquids Produced by the Dispersion of Magnetic Nanoparticles in 1- <i>n</i> -Butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (BMI.NTf ₂). ACS Applied Materials & Interfaces, 2012, 4, 5458-5465.	4.0	27
69	Moving from surfactant-stabilized aqueous rhodium (0) colloidal suspension to heterogeneous magnetite-supported rhodium nanocatalysts: Synthesis, characterization and catalytic performance in hydrogenation reactions. Catalysis Today, 2012, 183, 124-129.	2.2	27
70	Synergic Effect of Copper and Palladium for Selective Hydrogenation of Alkynes. Industrial & Engineering Chemistry Research, 2018, 57, 16209-16216.	1.8	27
71	Impact of Fe3O4 nanoparticle on nutrient accumulation in common bean plants grown in soil. SN Applied Sciences, 2019, 1, 1.	1.5	27
72	Screening of Soluble Rhodium Nanoparticles as Precursor for Highly Active Hydrogenation Catalysts: The Effect of the Stabilizing Agents. Topics in Catalysis, 2013, 56, 1228-1238.	1.3	26

#	Article	IF	CITATIONS
73	Palladium on magnetite: magnetically recoverable catalyst for selective hydrogenation of acetylenic to olefinic compounds. Tetrahedron, 2014, 70, 3314-3318.	1.0	26
74	Selective CO2 hydrogenation into methanol in a supercritical flow process. Journal of CO2 Utilization, 2020, 40, 101195.	3.3	26
75	Fe3O4 nanoparticles and Rhizobium inoculation enhance nodulation, nitrogen fixation and growth of common bean plants grown in soil. Rhizosphere, 2021, 17, 100275.	1.4	24
76	Direct Access to Oxidation-Resistant Nickel Catalysts through an Organometallic Precursor. ACS Catalysis, 2012, 2, 925-929.	5.5	23
77	Gold nanoparticles supported on magnesium ferrite and magnesium oxide for the selective oxidation of benzyl alcohol. RSC Advances, 2015, 5, 15035-15041.	1.7	23
78	Catalytic oxidation of cinnamyl alcohol using Au–Ag nanotubes investigated by surface-enhanced Raman spectroscopy. Nanoscale, 2015, 7, 8536-8543.	2.8	23
79	Reusable Heterogeneous Tungstophosphoric Acid-Derived Catalyst for Green Esterification of Carboxylic Acids. ACS Sustainable Chemistry and Engineering, 2019, 7, 15874-15883.	3.2	23
80	Towards the Effect of Pt 0 /Pt δ+ and Ce 3+ Species at the Surface of CeO 2 Crystals: Understanding the Nature of the Interactions under CO Oxidation Conditions. ChemCatChem, 2021, 13, 1340-1354.	1.8	23
81	Ion dependence of magnetic anisotropy in MFe2O4 (MFe, Co, Mn) nanoparticles synthesized by high-temperature reaction. Journal of Magnetism and Magnetic Materials, 2008, 320, e335-e338.	1.0	22
82	Nanoparticle Platform to Modulate Reaction Mechanism of Phenothiazine Photosensitizers. Journal of Nanoscience and Nanotechnology, 2010, 10, 3100-3108.	0.9	22
83	Rhodium Nanoparticles as Precursors for the Preparation of an Efficient and Recyclable Hydroformylation Catalyst. ChemCatChem, 2015, 7, 1566-1572.	1.8	22
84	Copper nanoparticles synthesized by thermal decomposition in liquid phase: the influence of capping ligands on the synthesis and bactericidal activity. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	21
85	A recoverable Pd nanocatalyst for selective semi-hydrogenation of alkynes: hydrogenation of benzyl-propargylamines as a challenging model. Green Chemistry, 2014, 16, 4566-4574.	4.6	21
86	Effect of Lipid Coating on the Interaction Between Silica Nanoparticles and Membranes. Journal of Biomedical Nanotechnology, 2014, 10, 519-528.	0.5	21
87	Efficient Oxidative Esterification of Furfural Using Au Nanoparticles Supported on Group 2 Alkaline Earth Metal Oxides. Catalysts, 2020, 10, 430.	1.6	21
88	Third-order nonlinearity of nickel oxide nanoparticles in toluene. Optics Letters, 2007, 32, 1435.	1.7	20
89	Design of a Dinuclear Nickel(II) Bioinspired Hydrolase to Bind Covalently to Silica Surfaces: Synthesis, Magnetism, and Reactivity Studies. Inorganic Chemistry, 2012, 51, 6104-6115.	1.9	19
90	Surface composition and structural changes on titanium oxide-supported AuPd nanoparticles during CO oxidation. Catalysis Science and Technology, 2017, 7, 1679-1689.	2.1	19

#	Article	IF	CITATIONS
91	A recyclable hybrid manganese(III) porphyrin magnetic catalyst for selective olefin epoxidation using molecular oxygen. Journal of Porphyrins and Phthalocyanines, 2018, 22, 331-341.	0.4	19
92	Enhancing the activity of gold supported catalysts by oxide coating: towards efficient oxidations. Green Chemistry, 2021, 23, 8453-8457.	4.6	19
93	Polymer versus phosphine stabilized Rh nanoparticles as components of supported catalysts: implication in the hydrogenation of cyclohexene model molecule. Dalton Transactions, 2016, 45, 17782-17791.	1.6	18
94	Tuning the selectivity of phenol hydrogenation using Pd, Rh and Ru nanoparticles supported on ceria- and titania-modified silicas. Catalysis Today, 2021, 381, 126-132.	2.2	18
95	Gold-amine cooperative catalysis for reductions and reductive aminations using formic acid as hydrogen source. Applied Catalysis B: Environmental, 2020, 267, 118728.	10.8	17
96	Structure and activity of supported bimetallic NiPd nanoparticles: influence of preparation method on CO ₂ reduction. ChemCatChem, 2020, 12, 2967-2976.	1.8	17
97	Tuning CO ₂ Hydrogenation Selectivity by N-Doped Carbon Coating over Nickel Nanoparticles Supported on SiO ₂ . ACS Sustainable Chemistry and Engineering, 2022, 10, 2331-2342.	3.2	17
98	Synthesis, structure and properties of a new unsymmetric tetranuclear mixed-valence vanadium(IV/V) complex containing distinct V2O33+ cores. Inorganic Chemistry Communication, 2002, 5, 418-421.	1.8	15
99	Catalytic abatement of CO over highly stable Pt supported on Ta2O5 nanotubes. Catalysis Communications, 2014, 48, 50-54.	1.6	15
100	Support Functionalization with a Phosphineâ€Containing Hyperbranched Polymer: A Strategy to Enhance Phosphine Grafting and Metal Loading in a Hydroformylation Catalyst. ChemCatChem, 2016, 8, 1951-1960.	1.8	15
101	Study of the influence of PPh3 used as capping ligand or as reaction modifier for hydroformylation reaction involving Rh NPs as precatalyst. Applied Catalysis A: General, 2017, 548, 136-142.	2.2	15
102	5-Hydroxymethylfurfural and Furfural Base-Free Oxidation over AuPd Embedded Bimetallic Nanoparticles. Catalysts, 2020, 10, 75.	1.6	15
103	Ethanol from Sugarcane and the Brazilian Biomass-Based Energy and Chemicals Sector. ACS Sustainable Chemistry and Engineering, 2021, 9, 4293-4295.	3.2	14
104	Resonance Raman and crystallographic studies on the complex [Fe2(bbpnol)2]·2DMF (bbpnol=N,N′-bis(2-hydroxybenzyl)-2-ol-1,3-propanediamine). Inorganica Chimica Acta, 2002, 329, 141-146.	1.2	13
105	Catalytic hydrodechlorination of chlorobenzene over supported palladium catalyst in buffered medium. Applied Catalysis B: Environmental, 2010, 100, 42-46.	10.8	13
106	Electro-oxidation of methanol in alkaline conditions using Pd–Ni nanoparticles prepared from organometallic precursors and supported on carbon vulcan. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	13
107	Cost-efficient method for unsymmetrical meso-aryl porphyrins and iron oxide-porphyrin hybrids prepared thereof. Dalton Transactions, 2016, 45, 16211-16220.	1.6	13
108	Hydrogenation of carbon dioxide: From waste to value. Current Opinion in Green and Sustainable Chemistry, 2020, 26, 100386.	3.2	13

#	Article	IF	CITATIONS
109	Structural control of gold nanoparticles self-assemblies by layer-by-layer process. Nanoscale, 2011, 3, 1717.	2.8	12
110	Piperazine-promoted gold-catalyzed hydrogenation: the influence of capping ligands. Catalysis Science and Technology, 2020, 10, 1996-2003.	2.1	12
111	Enhanced Energy Storage of Fe ₃ O ₄ Nanoparticles Embedded in Nâ€Đoped Graphene. ChemElectroChem, 2020, 7, 1456-1464.	1.7	12
112	Bioinspired-Metalloporphyrin Magnetic Nanocomposite as a Reusable Catalyst for Synthesis of Diastereomeric (â^')-Isopulegol Epoxide: Anticancer Activity Against Human Osteosarcoma Cells (MG-63). Molecules, 2019, 24, 52.	1.7	11
113	Sensing of 2,4-dichlorophenoxyacetic acid by surface-enhanced Raman scattering. Vibrational Spectroscopy, 2010, 54, 133-136.	1.2	9
114	Enhancement of hematoporphyrin IX potential for photodynamic therapy by entrapment in silica nanospheres. Physical Chemistry Chemical Physics, 2011, 13, 14946.	1.3	9
115	A green route for the synthesis of a bitter-taste dipeptide combining biocatalysis, heterogeneous metal catalysis and magnetic nanoparticles. RSC Advances, 2015, 5, 36449-36455.	1.7	9
116	Characterization of poly-{trans-[RuCl2(vpy)4]-styrene-4-vinylpyridine} impregnated with silver nanoparticles in non aqueous medium. Journal of the Brazilian Chemical Society, 2006, 17, 1679-1682.	0.6	8
117	In-field Mössbauer characterization of MFe ₂ O ₄ (M = Fe, Co, Ni) nanoparticles. Journal of Physics: Conference Series, 2010, 217, 012126.	0.3	8
118	Recent advances in the development of magnetically recoverable metal nanoparticle catalysts. Journal of the Brazilian Chemical Society, 2012, , .	0.6	8
119	Separation technology meets green chemistry: development of magnetically recoverable catalyst supports containing silica, ceria, and titania. Pure and Applied Chemistry, 2018, 90, 133-141.	0.9	8
120	Clean protocol for deoxygenation of epoxides to alkenes <i>via</i> catalytic hydrogenation using gold. Catalysis Science and Technology, 2021, 11, 312-318.	2.1	8
121	Riboflavin Surface Modification of Poly(vinyl chloride) for Light-Triggered Control of Bacterial Biofilm and Virus Inactivation. ACS Applied Materials & Interfaces, 2021, 13, 32251-32262.	4.0	8
122	Zeoliticâ€Imidazolate Framework Derived Intermetallic Nickel Zinc Carbide Material as a Selective Catalyst for CO ₂ to CO Reduction at High Pressure. European Journal of Inorganic Chemistry, 2021, 2021, 4521-4529.	1.0	8
123	Preparation and Characterization of the Novels Terpolymers of Poly-{trans-[RuCl2(vpy)4]-styrene-divinylbenzene} and Styrene-divinylbenzene-vinylpiridine impregnated with Silver Nanoparticles. Polymer Bulletin, 2008, 60, 809-819.	1.7	7
124	Restructuring of Goldâ€Palladium Alloyed Nanoparticles: A Step towards More Active Catalysts for Oxidation of Alcohols. ChemCatChem, 2019, 11, 4021-4027.	1.8	7
125	Synthesis, properties, and application in peptide chemistry of a magnetically separable and reusable biocatalyst. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	6
126	The influence of 1,2-alkanediol on the crystallinity of magnetite nanoparticles. Journal of Magnetism and Magnetic Materials, 2016, 417, 49-55.	1.0	6

#	Article	IF	CITATIONS
127	Immobilization of Rh(I)-N-Xantphos and Fe(II)-C-Scorpionate onto Magnetic Nanoparticles: Reusable Catalytic System for Sequential Hydroformylation/Acetalization. Catalysts, 2021, 11, 608.	1.6	6
128	Process Optimization for a Sustainable and Selective Conversion of Fumaric Acid into Î ³ -Butyrolactone Over Pd-Re/SiO2. Catalysis Letters, 2021, 151, 1821-1833.	1.4	5
129	Temperatureâ€Driven Restructuring of Silver on AuAg Porous Nanotubes: Impact on CO Oxidation. ChemistrySelect, 2017, 2, 660-664.	0.7	4
130	Facile recycling approach for waste minimization of silica-coated magnetite nanoparticles synthesis. Separation Science and Technology, 2017, 52, 504-511.	1.3	3
131	Women in Green Chemistry and Engineering: Agents of Change Toward the Achievement of a Sustainable Future. ACS Sustainable Chemistry and Engineering, 2022, 10, 2859-2862.	3.2	3
132	One-pot organometallic synthesis of alumina-embedded Pd nanoparticles. Dalton Transactions, 2017, 46, 14318-14324.	1.6	2
133	Cold Catalysis for Selective Hydrogenation of Aldehydes and Valorization of Bio‑Based Chemical Building Blocks. Journal of the Brazilian Chemical Society, 2019, , .	0.6	2
134	Nanocomposite particles containing semiconductor and magnetic nanocrystals: fabrication and characterization. , 2004, , .		1
135	Comparing Thermal-Cracking and Catalytic Hydrocracking in the Presence of Rh and Ru Catalysts to Produce Liquid Hydrocarbons from Vegetable Oils. Journal of the Brazilian Chemical Society, 2014, , .	0.6	1
136	Determination of Metal Loading in Heterogeneous Catalyst by Slurry Sampling Flame Atomic Absorption Spectrometry. Journal of the Brazilian Chemical Society, 2014, , .	0.6	1
137	Palladium-catalyzed sabinene oxidation with hydrogen peroxide: Smart fragrance production and DFT insights. Molecular Catalysis, 2022, 517, 112033.	1.0	1
138	Building Pathways to a Sustainable Planet. ACS Sustainable Chemistry and Engineering, 2022, 10, 1-2.	3.2	1
139	Expectations for Perspectives in ACS Sustainable Chemistry & Engineering. ACS Sustainable Chemistry and Engineering, 2021, 9, 16528-16530.	3.2	1
140	Magnetic Nanoparticles: general discussion. Faraday Discussions, 2014, 175, 113-135.	1.6	0
141	Optical nanoparticles: general discussion. Faraday Discussions, 2014, 175, 215-227.	1.6	0
142	Thermal catalytic conversion: general discussion. Faraday Discussions, 2021, 230, 124-151.	1.6	0
143	Inorganic Chemistry in Latin America. European Journal of Inorganic Chemistry, 2021, 2021, 423-425.	1.0	0
144	Emerging technologies: general discussion. Faraday Discussions, 2021, 230, 388-412.	1.6	0

9