Sun Joo Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1282720/publications.pdf Version: 2024-02-01

SUN LOO KIM

#	Article	IF	CITATIONS
1	Metabolic regulation of gene expression by histone lactylation. Nature, 2019, 574, 575-580.	27.8	1,308
2	Mechanism Investigation of Rifampicin-Induced Liver Injury Using Comparative Toxicoproteomics in Mice. International Journal of Molecular Sciences, 2017, 18, 1417.	4.1	56
3	First profiling of lysine crotonylation of myofilament proteins and ribosomal proteins in zebrafish embryos. Scientific Reports, 2018, 8, 3652.	3.3	55
4	Comparative Proteome Profiling and Mutant Protein Identification in Metastatic Prostate Cancer Cells by Quantitative Mass Spectrometry-based Proteogenomics. Cancer Genomics and Proteomics, 2019, 16, 273-286.	2.0	20
5	Comparative Secretome Profiling and Mutant Protein Identification in Metastatic Prostate Cancer Cells by Quantitative Mass Spectrometry-based Proteomics. Cancer Genomics and Proteomics, 2018, 15, 279-290.	2.0	19
6	Histone lysine methacrylation is a dynamic post-translational modification regulated by HAT1 and SIRT2. Cell Discovery, 2021, 7, 122.	6.7	19
7	Global proteomic analysis of lysine acetylation in zebrafish (<i>Danio rerio</i>) embryos. Electrophoresis, 2016, 37, 3137-3145.	2.4	14
8	Investigation of selective inhibitory effects of glycyrol on human CYP 1A1 and 2C9. Xenobiotica, 2016, 46, 857-861.	1.1	11
9	In Vitro Inhibitory Effects of APINACA on Human Major Cytochrome P450, UDP-Glucuronosyltransferase Enzymes, and Drug Transporters. Molecules, 2019, 24, 3000.	3.8	11
10	Comparative Proteomic Analysis Reveals the Upregulation of Ketogenesis in Cardiomyocytes Differentiated from Induced Pluripotent Stem Cells. Proteomics, 2019, 19, e1800284.	2.2	11
11	Quantitative Proteomic Analysis of Changes Related to Age and Calorie Restriction in Rat Liver Tissue. Proteomics, 2018, 18, 1700240.	2.2	7
12	<i>In vitro</i> characterization of glycyrol metabolites in human liver microsomes using HR-resolution MS spectrometer coupled with tandem mass spectrometry. Xenobiotica, 2020, 50, 380-388.	1.1	7
13	Investigation of the Regulatory Effects of Saccharin on Cytochrome P450s in Male ICR Mice. Toxicological Research, 2017, 33, 25-30.	2.1	6
14	Development of a simultaneous LC–MS/MS method to predict in vivo drug–drug interaction in mice. Archives of Pharmacal Research, 2018, 41, 450-458.	6.3	6
15	In Vitro Metabolism of 25B-NBF, 2-(4-Bromo-2,5-Dimethoxyphenyl)-N-(2-Fluorobenzyl)ethanamine, in Human Hepatocytes Using Liquid Chromatography–Mass Spectrometry. Molecules, 2019, 24, 818.	3.8	6
16	Identification of Catalposide Metabolites in Human Liver and Intestinal Preparations and Characterization of the Relevant Sulfotransferase, UDP-glucuronosyltransferase, and Carboxylesterase Enzymes. Pharmaceutics, 2019, 11, 355.	4.5	5
17	In Vitro Interaction of AB-FUBINACA with Human Cytochrome P450, UDP-Glucuronosyltransferase Enzymes and Drug Transporters. Molecules, 2020, 25, 4589.	3.8	5
18	Identification of Decrease in TRiC Proteins as Novel Targets of Alpha-Amanitin-Derived Hepatotoxicity by Comparative Proteomic Analysis In Vitro. Toxins, 2021, 13, 197.	3.4	5

#	Article	IF	CITATIONS
19	Selective Inhibition of Bakuchicin Isolated from <i>Psoralea corylifolia</i> on CYP1A in Human Liver Microsomes. Evidence-based Complementary and Alternative Medicine, 2016, 2016, 1-7.	1.2	4
20	Decreased absorption of midazolam in the stomach due to low pH induced by co-administration of Banha-sasim-tang. Environmental Health and Toxicology, 2016, 31, e2016016.	1.8	2