S W Grab

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1282287/publications.pdf Version: 2024-02-01

SIN CDAR

#	Article	lF	CITATIONS
1	Advance of apple and pear tree full bloom dates in response to climate change in the southwestern Cape, South Africa: 1973–2009. Agricultural and Forest Meteorology, 2011, 151, 406-413.	1.9	95
2	Plant phenology and climate change. Progress in Physical Geography, 2015, 39, 460-482.	1.4	86
3	African hydroclimatic variability during the last 2000 years. Quaternary Science Reviews, 2016, 154, 1-22.	1.4	83
4	Temperature variability over Africa during the last 2000 years. Holocene, 2013, 23, 1085-1094.	0.9	81
5	A 66â€year tropical cyclone record for southâ€east Africa: temporal trends in a global context. International Journal of Climatology, 2014, 34, 3604-3615.	1.5	74
6	Shifting westerlies and precipitation patterns during the Late Pleistocene in southern Africa determined using glacier reconstruction and mass balance modelling. Quaternary Science Reviews, 2012, 55, 145-159.	1.4	66
7	"A sky of brass and burning winds― documentary evidence of rainfall variability in the Kingdom of Lesotho, Southern Africa, 1824–1900. Climatic Change, 2010, 101, 617-653.	1.7	65
8	Documentary evidence of climate variability during cold seasons in Lesotho, southern Africa, 1833–1900. Climate Dynamics, 2010, 34, 473-499.	1.7	59
9	Multi-proxy summer and winter precipitation reconstruction for southern Africa over the last 200 years. Climate Dynamics, 2014, 42, 2713-2726.	1.7	56
10	Heat stress and chickens: climate risk effects on rural poultry farming in low-income countries. Climate and Development, 2019, 11, 83-90.	2.2	56
11	Characteristics and palaeoenvironmental significance of relict sorted patterned ground, Drakensberg plateau, southern Africa. Quaternary Science Reviews, 2002, 21, 1729-1744.	1.4	47
12	Recognition and palaeoclimatic implications of late Quaternary niche glaciation in eastern Lesotho. Journal of Quaternary Science, 2009, 24, 647-663.	1.1	44
13	Assessment of Social Vulnerability to Natural Hazards in the Mountain Kingdom of Lesotho. Mountain Research and Development, 2015, 35, 115-125.	0.4	40
14	Thermal regime for a thufa apex and its adjoining depression, Mashai Valley, Lesotho. Permafrost and Periglacial Processes, 1997, 8, 437-445.	1.5	35
15	Thufur in the mohlesi valley, lesotho, Southern Africa. Permafrost and Periglacial Processes, 1994, 5, 111-118.	1.5	30
16	Lightning as a geomorphic agent on mountain summits: Evidence from southern Africa. Geomorphology, 2014, 204, 61-70.	1.1	30
17	Controls on basalt terrace formation in the eastern Lesotho highlands. Geomorphology, 2005, 67, 473-485.	1.1	29
18	Application of thermography for monitoring stomatal conductance of Coffea arabica under different shading systems. Science of the Total Environment, 2017, 609, 755-763.	3.9	29

#	Article	IF	CITATIONS
19	Block and debris deposits in the high drakensberg, lesotho, southern africa: implications for high altitude slope processes. Geografiska Annaler, Series A: Physical Geography, 1999, 81, 1-16.	0.6	27
20	Geomorphological and Geoecological Controls and Processes Following Gully Development in Alpine Mires, Lesotho. Arctic, Antarctic, and Alpine Research, 2004, 36, 49-58.	0.4	26
21	Sandstone geomorphology of the Golden Gate Highlands National Park, South Africa, in a global context. Koedoe, 2011, 53, .	0.3	25
22	Holocene climatic variability indicated by a multi-proxy record from southern Africa's highest wetland. Holocene, 2017, 27, 638-650.	0.9	24
23	Holocene palaeoenvironments inferred from a sedimentary sequence in the Tsoaing River Basin, western Lesotho. Catena, 2005, 61, 49-62.	2.2	22
24	Late Quaternary research in southern Africa: progress, challenges and future trajectories. Transactions of the Royal Society of South Africa, 2017, 72, 280-293.	0.8	22
25	Projected changes in tropical cyclones over the South West Indian Ocean under different extents of global warming. Environmental Research Letters, 2018, 13, 065019.	2.2	22
26	Assessing the impact of El Niño–Southern Oscillation on South African temperatures during austral summer. International Journal of Climatology, 2019, 39, 143-156.	1.5	22
27	Annually re-forming miniature sorted patterned ground in the high Drakensberg, southern Africa. Earth Surface Processes and Landforms, 1997, 22, 733-745.	1.2	21
28	Stone-banked lobes and environmental implications, high Drakensberg, southern Africa. Permafrost and Periglacial Processes, 2000, 11, 177-187.	1.5	21
29	Late quaternary moraines along the sekhokong range, eastern lesotho: contrasting the geomorphic history of north―and southâ€facing slopes. Geografiska Annaler, Series A: Physical Geography, 2009, 91, 121-140.	0.6	21
30	Mapping exposure to snow in a developing African context: implications for human and livestock vulnerability in Lesotho. Natural Hazards, 2014, 71, 1537-1560.	1.6	21
31	Characterizing rainfall in the southâ€western Cape, South Africa: 1841–2016. International Journal of Climatology, 2020, 40, 1992-2014.	1.5	20
32	Earth hummocks (thúfur): new insights to their thermal characteristics and development in eastern Lesotho, southern Africa. Earth Surface Processes and Landforms, 2005, 30, 541-555.	1.2	19
33	A multiâ€proxy analysis of late Quaternary palaeoenvironments, Sekhokong Range, eastern Lesotho. Journal of Quaternary Science, 2016, 31, 788-798.	1.1	19
34	Narratives of nineteenth century drought in southern Africa in different historical source types. Climatic Change, 2019, 152, 467-485.	1.7	19
35	Smallholder farmers in the Great Ruaha River sub-Basin of Tanzania: coping or adapting to rainfall variability?. Climate and Development, 2017, 9, 217-230.	2.2	18
36	Drainage network morphometry and evolution in the eastern Lesotho highlands, southern Africa. Quaternary International, 2018, 470, 4-17.	0.7	18

#	Article	IF	CITATIONS
37	Integrated climatology and trends in the subtropical Hadley cell, sunshine duration and cloud cover over South Africa. International Journal of Climatology, 2019, 39, 1805-1821.	1.5	17
38	Glacial and periglacial phenomena in Ethiopia: a review. Permafrost and Periglacial Processes, 2002, 13, 71-76.	1.5	16
39	The burrow system of the African ice rat Otomys sloggetti robertsi. Mammalian Biology, 2006, 71, 356-365.	0.8	16
40	Alpine turf exfoliation pans in Lesotho, southern Africa: Climate–process–morphological linkages. Geomorphology, 2010, 114, 261-275.	1.1	16
41	Some attributes of snow occurrence and snowmelt/sublimation rates in the Lesotho Highlands: environmental implications. Water S A, 2017, 43, 333.	0.2	15
42	Turf exfoliation in the high drakensberg, southern africa. Geografiska Annaler, Series A: Physical Geography, 2002, 84, 39-50.	0.6	14
43	Increasing frost risk associated with advanced citrus flowering dates in Kerman and Shiraz, Iran: 1960–2010. International Journal of Biometeorology, 2014, 58, 1811-1815.	1.3	14
44	The land and its climate knows no transition, no middle ground, everywhere too much or too little: a documentaryâ€based climate chronology for central Namibia, 1845–1900. International Journal of Climatology, 2018, 38, e643.	1.5	14
45	TOWARDS AN INTEGRATED RESEARCH APPROACH FOR THE DRAKENSBERG AND LESOTHO MOUNTAIN ENVIRONMENTS: A CASE STUDY FROM THE SANI PLATEAU REGION. Southern African Geographical Journal, 2001, 83, 64-68.	0.9	12
46	Rockâ€ s urface temperatures of basalt in the drakensberg alpine environment, lesotho. Geografiska Annaler, Series A: Physical Geography, 2007, 89, 185-193.	0.6	12
47	Ploughing boulders on the Rock and Pillar Range, southâ€central New Zealand: Their geomorphology and alpine plant associations. Journal of the Royal Society of New Zealand, 2008, 38, 51-70.	1.0	12
48	A homogenized longâ€ŧerm temperature record for the Western Cape Province in South Africa: 1916–2013. International Journal of Climatology, 2017, 37, 2337-2353.	1.5	12
49	Influence of mountain geomorphology on alpine ecosystems in the Drakensberg Alpine Centre, Southern Africa. Geografiska Annaler, Series A: Physical Geography, 2018, 100, 140-162.	0.6	12
50	Late-Holocene climate and vegetation dynamics in eastern Lesotho highlands. Holocene, 2018, 28, 1483-1494.	0.9	12
51	The occurrence of a holocene rock glacier on Mount Kenya: Some observations and comments. Permafrost and Periglacial Processes, 1996, 7, 381-389.	1.5	11
52	A NOTE ON THE MORPHOLOGY OF MINIATURE SORTED STRIPES AT MAFADI SUMMIT, HIGH DRAKENSBERG. Southern African Geographical Journal, 1996, 78, 59-63.	0.9	11
53	Needle ice observations from the high Drakensberg, Lesotho. Permafrost and Periglacial Processes, 2001, 12, 227-231.	1.5	11
54	Fine-Scale Variations of Near-Surface-Temperature Lapse Rates in the High Drakensberg Escarpment, South Africa: Environmental Implications. Arctic, Antarctic, and Alpine Research, 2013, 45, 500-514.	0.4	11

#	Article	IF	CITATIONS
55	Chrysocoma ciliata L. (Asteraceae) in the Lesotho Highlands: an anthropogenically introduced invasive or a niche coloniser?. Biological Invasions, 2017, 19, 2711-2728.	1.2	11
56	A note on needle-ice mound formation in the High Drakensberg, Southern Africa. Permafrost and Periglacial Processes, 2002, 13, 315-318.	1.5	10
57	Temperature and tree age interact to increase mango yields in the Lowveld, South Africa. Southern African Geographical Journal, 2016, 98, 105-117.	0.9	10
58	Spatio-temporal temperature trends and extreme hydro-climatic events in southern Zimbabwe. Southern African Geographical Journal, 2018, 100, 210-232.	0.9	10
59	The role of physical geographic parameters affecting past (1980–2010) and future (2020–2049) thermal stress in Iran. Natural Hazards, 2020, 102, 365-399.	1.6	10
60	Near-surface rockwall temperatures in high Drakensberg basalt: spatio-temporal differences and possible implications for weathering. Zeitschrift Für Geomorphologie, 2007, 51, 103-113.	0.3	9
61	Rock doughnut and pothole structures of the Clarens Fm. Sandstone in the Karoo Basin, South Africa: Possible links to Lower Jurassic fluid seepage. Geomorphology, 2011, 131, 14-27.	1.1	9
62	Wind speed characteristics and implications for wind power generation: Cape regions, South Africa. South African Journal of Science, 2017, 113, 8.	0.3	9
63	Potential impacts of major nineteenth century volcanic eruptions on temperature over Cape Town, South Africa: 1834–1899. Climatic Change, 2020, 159, 523-544.	1.7	9
64	Spatial associations between longestâ€lasting winter snow cover and cold region landforms in the high drakensberg, southern africa. Geografiska Annaler, Series A: Physical Geography, 2009, 91, 83-97.	0.6	8
65	multi-disciplinary review of late Quaternary palaeoclimates and environments for Lesotho. South African Journal of Science, 2016, 112, 9.	0.3	8
66	Late glacial (17,060–13,400 cal yr BP) sedimentary and paleoenvironmental evolution of the Sekhokong Range (Drakensberg), southern Africa. PLoS ONE, 2021, 16, e0246821.	1.1	8
67	Ground thermal profiles from mount kenya, east africa. Geografiska Annaler, Series A: Physical Geography, 2004, 86, 131-141.	0.6	7
68	Surface texture analysis of southern Tuli Basin sediments: Implications for Limpopo Valley geoarchaeological contexts. Journal of African Earth Sciences, 2011, 59, 384-394.	0.9	7
69	Spatial and temporal patterns of lightning strikes in the eastern Lesotho Highlands, southern Africa. Southern African Geographical Journal, 2016, 98, 321-336.	0.9	7
70	South African geomorphology: current status and new challenges. Southern African Geographical Journal, 2016, 98, 405-416.	0.9	7
71	Testing a new application for TOPSIS: monitoring drought and wet periods in Iran. Theoretical and Applied Climatology, 2018, 131, 557-571.	1.3	7
72	A 19th century daily surface pressure series for the Southwestern Cape region of South Africa: 1834–1899. International Journal of Climatology, 2019, 39, 1404-1414.	1.5	7

#	Article	IF	CITATIONS
73	Periglacial landforms in the high Drakensberg, Southern Africa: morphogenetic associations with rock weathering rinds and shrub growth patterns. Geografiska Annaler, Series A: Physical Geography, 0, , 1-24.	0.6	7
74	Rainfall and river flow trends for the Western Cape Province, South Africa. South African Journal of Science, 2019, 115, .	0.3	6
75	Sandstone Landforms of the Karoo Basin: Naturally Sculpted Rock. World Geomorphological Landscapes, 2015, , 11-21.	0.1	6
76	Contemporary spatio-temporal patterns of snow cover over the Drakensberg. South African Journal of Science, 2010, 105, .	0.3	5
77	Whose knowledge matters in climate change adaptation? Perceived and measured rainfall trends during the last half century in southâ€western Tanzania. Singapore Journal of Tropical Geography, 2018, 39, 266-280.	0.6	5
78	Major Volcanic Eruptions and Their Impacts on Southern Hemisphere Temperatures During the Late 19th and 20th Centuries, as Simulated by CMIP5 Models. Geophysical Research Letters, 2020, 47, e2020GL087792.	1.5	5
79	Quantifying and reducing researcher subjectivity in the generation of climate indices from documentary sources. Climate of the Past, 2022, 18, 1071-1081.	1.3	5
80	A PILOT STUDY ON NEEDLE ICE INDUCED STREAM-BANK EROSION IN THE MASHAI VALLEY, LESOTHO HIGHLANDS. Southern African Geographical Journal, 1999, 81, 126-134.	0.9	4
81	"Everything is scorched by the burning sunâ€i missionary perspectives and experiences of 19th- and early 20th-century droughts in semi-arid central Namibia. Climate of the Past, 2020, 16, 679-697.	1.3	4
82	Warm nights drive Coffea arabica ripening in Tanzania. International Journal of Biometeorology, 2021, 65, 181-192.	1.3	4
83	Perceived impacts of climate change on rural poultry production: a case study in Limpopo Province, South Africa. Climate and Development, 2022, 14, 389-397.	2.2	4
84	Grain-size characteristics of surface sands and sandstones: indicators of potential sediment sources for the southern Tuli Basin, South Africa. Southern African Geographical Journal, 2010, 92, 7-21.	0.9	3
85	Progressive delays in the timing of sardine migration in the southwest Indian Ocean. South African Journal of Science, 2019, 115, .	0.3	3
86	Basalt pseudokarst development in the Lesotho Highlands, southern Africa. Quaternary International, 2022, 611-612, 29-40.	0.7	3
87	"But what silence! No more gazelles…†Occurrence and extinction of fauna in Lesotho, southern Africa, since the late Pleistocene. Quaternary International, 2022, 611-612, 87-101.	0.7	3
88	Comparative assessment of farmers' perceptions on drought impacts: the case of a coastal lowland versus adjoining mountain foreland region of northern Iran. Theoretical and Applied Climatology, 2021, 143, 489-503.	1.3	3
89	Twentieth century precipitation trends in the upper Mzingwane sub-catchment of the northern Limpopo basin, Zimbabwe. Theoretical and Applied Climatology, 2022, 149, 309-325.	1.3	3
90	â€~Anti-erosion' logs across paths in the southern uKhahlamba–Drakensberg Transfrontier Park, South Africa: Cure or curse?. Catena, 2008, 73, 134-145.	2.2	2

#	Article	IF	Citations
91	On the burrowing impacts of ice rats <i>Otomys sloggetti robertsi</i> at a wetland fringe in the Afro-alpine zone, Lesotho. Southern African Geographical Journal, 2012, 94, 75-84.	0.9	2
92	Glacial and periglacial geomorphology. , 0, , 121-136.		2
93	Landscape–climate–human relations in the Quaternary of southern Africa. , 0, , 412-431.		2
94	Granger causality of the local Hadley cell and large-scale cloud cover over South Africa. South African Journal of Science, 2019, 115, .	0.3	2
95	An evaluation of the CORDEX regional climate models in simulating future rainfall and extreme events over Mzingwane catchment, Zimbabwe. Theoretical and Applied Climatology, 2020, 140, 91-100.	1.3	2
96	Reconstruction of cold front frequency over Cape Town, South Africa, using daily mean sea level pressure values: 1834–1899. International Journal of Climatology, 2021, 41, 1784-1800.	1.5	2
97	Southern Hemisphere continental temperature responses to major volcanic eruptions since 1883 in CMIP5 models. Theoretical and Applied Climatology, 2022, 147, 143-157.	1.3	2
98	Southern African temperature responses to major volcanic eruptions since 1883: Simulated by CMIP5 models. International Journal of Climatology, 2021, 41, 5386-5405.	1.5	1
99	THE INFLUENCE OF BTEX LANDFILL GAS EMISSIONS: A CASE STUDY OF RESIDENTS IN ROODEPOORT, GAUTENG, SOUTH AFRICA. WIT Transactions on Ecology and the Environment, 2017, , .	0.0	0
100	Temperature and relative humidity trends in the northernmost region of South Africa, 1950–2016. South African Journal of Science, 2021, 117, .	0.3	0
101	Australian <scp>subâ€regional</scp> temperature responses to volcanic forcing: A critical analysis using <scp>CMIP5</scp> models. International Journal of Climatology, 0, ,	1.5	0
102	The Late-Eighteenth-Century Climate of Cape Town, South Africa, Based on the Dutch East India Company "Day Registers―(1773–91). Bulletin of the American Meteorological Society, 2022, 103, E1781-E1795.	1.7	0