
Claire Thornton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1281413/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Induction of Mitochondrial Fragmentation and Mitophagy after Neonatal Hypoxia–Ischemia. Cells, 2022, 11, 1193.	1.8	5
2	Mitochondrial dynamics in the neonatal brain – a potential target following injury?. Bioscience Reports, 2022, 42, .	1.1	5
3	Differential effects of Urban Particulate Matter on BV2 microglial-like and C17.2 neural stem/precursor cells. Developmental Neuroscience, 2022, , .	1.0	Ο
4	The role of mitochondria in cocaine addiction. Biochemical Journal, 2021, 478, 749-764.	1.7	14
5	Early life exposure to air pollution impacts neuronal and glial cell function leading to impaired neurodevelopment. BioEssays, 2021, 43, e2000288.	1.2	30
6	Editorial: Experimental and Clinical Approaches in the Pursuit of Novel Therapeutic Strategies for Perinatal Brain Injury and Its Neurological Sequelae. Frontiers in Cellular Neuroscience, 2021, 15, 762111.	1.8	0
7	Zeta Inhibitory Peptide attenuates learning and memory by inducing NO-mediated downregulation of AMPA receptors. Nature Communications, 2020, 11, 3688.	5.8	10
8	Neuroprotective Effects of Diabetes Drugs for the Treatment of Neonatal Hypoxia-Ischemia Encephalopathy. Frontiers in Cellular Neuroscience, 2020, 14, 112.	1.8	8
9	Interneuron Development Is Disrupted in Preterm Brains With Diffuse White Matter Injury: Observations in Mouse and Human. Frontiers in Physiology, 2019, 10, 955.	1.3	55
10	Post-mortem Characterisation of a Case With an ACTG1 Variant, Agenesis of the Corpus Callosum and Neuronal Heterotopia. Frontiers in Physiology, 2019, 10, 623.	1.3	11
11	Lipopolysaccharideâ€induced alteration of mitochondrial morphology induces a metabolic shift in microglia modulating the inflammatory response in vitro and in vivo. Glia, 2019, 67, 1047-1061.	2.5	155
12	Magnesium induces preconditioning of the neonatal brain via profound mitochondrial protection. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 1038-1055.	2.4	44
13	Magnesium sulphate induces preconditioning in preterm rodent models of cerebral hypoxiaâ€ischemia. International Journal of Developmental Neuroscience, 2018, 70, 56-66.	0.7	14
14	Mitochondrial dynamics, mitophagy and biogenesis in neonatal hypoxicâ€ i schaemic brain injury. FEBS Letters, 2018, 592, 812-830.	1.3	42
15	Voxel-wise comparisons of cellular microstructure and diffusion-MRI in mouse hippocampus using 3D Bridging of Optically-clear histology with Neuroimaging Data (3D-BOND). Scientific Reports, 2018, 8, 4011.	1.6	47
16	Neuroprotective Strategies for Newborns. , 2018, , 2185-2199.		0
17	Neuroprotective exendin-4 enhances hypothermia therapy in a model of hypoxic-ischaemic encephalopathy. Brain, 2018, 141, 2925-2942.	3.7	35
18	TWEAK Receptor Deficiency Has Opposite Effects on Female and Male Mice Subjected to Neonatal Hypoxia–Ischemia. Frontiers in Neurology, 2018, 9, 230.	1.1	3

CLAIRE THORNTON

#	Article	IF	CITATIONS
19	Implicating Receptor Activator of NF-κB (RANK)/RANK Ligand Signalling in Microglial Responses to Toll-Like Receptor Stimuli. Developmental Neuroscience, 2017, 39, 192-206.	1.0	23
20	Oxidative stress and endoplasmic reticulum (ER) stress in the development of neonatal hypoxic–ischaemic brain injury. Biochemical Society Transactions, 2017, 45, 1067-1076.	1.6	51
21	Mechanisms of Cell Death in the Developing Brain. , 2017, , 76-85.e4.		1
22	Mitochondria, Bioenergetics and Excitotoxicity: New Therapeutic Targets in Perinatal Brain Injury. Frontiers in Cellular Neuroscience, 2017, 11, 199.	1.8	43
23	Cell Death in the Developing Brain after Hypoxia-Ischemia. Frontiers in Cellular Neuroscience, 2017, 11, 248.	1.8	123
24	γÎT cells but not αβT cells contribute to sepsis-induced white matter injury and motor abnormalities in mice. Journal of Neuroinflammation, 2017, 14, 255.	3.1	32
25	AMPK: keeping the (power)house in order?. Neuronal Signaling, 2017, 1, NS20160020.	1.7	4
26	Effect of Trp53 gene deficiency on brain injury after neonatal hypoxia-ischemia. Oncotarget, 2017, 8, 12081-12092.	0.8	5
27	Neuroprotective Strategies for Newborns. , 2016, , 1-15.		Ο
28	Mitochondrial Optic Atrophy (OPA) 1 Processing Is Altered in Response to Neonatal Hypoxic-Ischemic Brain Injury. International Journal of Molecular Sciences, 2015, 16, 22509-22526.	1.8	47
29	Cellular Mechanisms of Toll-Like Receptor-3 Activation in the Thalamus Are Associated With White Matter Injury in the Developing Brain. Journal of Neuropathology and Experimental Neurology, 2015, 74, 273-285.	0.9	31
30	A dual role for <scp>AMP</scp> â€activated protein kinase (AMPK) during neonatal hypoxic–ischaemic brain injury in mice. Journal of Neurochemistry, 2015, 133, 242-252.	2.1	53
31	The Anti-Inflammatory Effects of the Small Molecule Pifithrin-µ on BV2 Microglia. Developmental Neuroscience, 2015, 37, 363-375.	1.0	10
32	Role of mitochondria in apoptotic and necroptotic cell death in the developing brain. Clinica Chimica Acta, 2015, 451, 35-38.	0.5	82
33	Does Caspase-6 Have a Role in Perinatal Brain Injury?. Developmental Neuroscience, 2015, 37, 321-337.	1.0	6
34	Mitochondria: hub of injury responses in the developing brain. Lancet Neurology, The, 2014, 13, 217-232.	4.9	153
35	Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL) Signaling and Cell Death in the Immature Central Nervous System after Hypoxia-Ischemia and Inflammation. Journal of Biological Chemistry, 2014, 289, 9430-9439.	1.6	82
36	Toll-Like Receptor 3 Expression in Glia and Neurons Alters in Response to White Matter Injury in Preterm Infants. Developmental Neuroscience, 2013, 35, 130-139.	1.0	51

CLAIRE THORNTON

#	Article	IF	CITATIONS
37	Receptor for complement peptide C3a: a therapeutic target for neonatal hypoxicâ€ischemic brain injury. FASEB Journal, 2013, 27, 3797-3804.	0.2	48
38	Death Associated Protein Kinases: Molecular Structure and Brain Injury. International Journal of Molecular Sciences, 2013, 14, 13858-13872.	1.8	37
39	Molecular Mechanisms of Neonatal Brain Injury. Neurology Research International, 2012, 2012, 1-16.	0.5	102
40	AMP-activated protein kinase: new regulation, new roles?. Biochemical Journal, 2012, 445, 11-27.	1.7	341
41	Mitochondria and perinatal brain injury. Journal of Maternal-Fetal and Neonatal Medicine, 2012, 25, 35-38.	0.7	33
42	AMP-activated protein kinase (AMPK) is a tau kinase, activated in response to amyloid β-peptide exposure. Biochemical Journal, 2011, 434, 503-512.	1.7	155
43	Investigating the Regulation of Brain-specific Kinases 1 and 2 by Phosphorylation. Journal of Biological Chemistry, 2008, 283, 14946-14954.	1.6	47
44	Muscarinic Receptor Activation of AMP-activated Protein Kinase Inhibits Orexigenic Neuropeptide mRNA Expression. Journal of Biological Chemistry, 2008, 283, 17116-17122.	1.6	30
45	Mind Bomb-2 Is an E3 Ligase That Ubiquitinates the N-Methyl-d-aspartate Receptor NR2B Subunit in a Phosphorylation-dependent Manner. Journal of Biological Chemistry, 2008, 283, 301-310.	1.6	66
46	Spatial and Temporal Regulation of RACK1 Function and N-methyl-D-aspartate Receptor Activity through WD40 Motif-mediated Dimerization. Journal of Biological Chemistry, 2004, 279, 31357-31364.	1.6	71
47	H-Ras Modulates N-Methyl-D-aspartate Receptor Function via Inhibition of Src Tyrosine Kinase Activity. Journal of Biological Chemistry, 2003, 278, 23823-23829.	1.6	53
48	NMDA receptor function is regulated by the inhibitory scaffolding protein, RACK1. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 5710-5715.	3.3	177
49	Identification of a Novel AMP-activated Protein Kinase β Subunit Isoform That Is Highly Expressed in Skeletal Muscle. Journal of Biological Chemistry, 1998, 273, 12443-12450.	1.6	206
50	Molecular characterization of the AMP-activated protein kinase and its role in cellular metabolism. Biochemical Society Transactions, 1997, 25, 1224-1228.	1.6	10
51	139 IDENTIFICATION OF A NOVEL AMPKÎ ² SUBUNIT THAT IS HIGHLY EXPRESSED IN SKELETAL MUSCLE. Biochemical Society Transactions, 1997, 25, S667-S667.	1.6	3