
## **Barclay Morrison**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1281298/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Region-Dependent Viscoelastic Properties of Human Brain Tissue Under Large Deformations. Annals of<br>Biomedical Engineering, 2022, 50, 1452-1460.                                                       | 1.3 | 5         |
| 2  | Recent advancements in inÂvitro models of traumatic brain injury. Current Opinion in Biomedical<br>Engineering, 2022, 23, 100396.                                                                        | 1.8 | 3         |
| 3  | Viscoelastic characterization of porcine brain tissue mechanical properties under indentation loading. Brain Multiphysics, 2021, 2, 100041.                                                              | 0.8 | 7         |
| 4  | Hyaluronidase reduced edema after experimental traumatic brain injury. Journal of Cerebral Blood<br>Flow and Metabolism, 2020, 40, 2026-2037.                                                            | 2.4 | 6         |
| 5  | Direct Observation of Low Strain, High Rate Deformation of Cultured Brain Tissue During Primary<br>Blast. Annals of Biomedical Engineering, 2020, 48, 1196-1206.                                         | 1.3 | 13        |
| 6  | Prediction of probability of fatality due to brain injury in traffic accidents. Traffic Injury Prevention, 2019, 20, S27-S31.                                                                            | 0.6 | 5         |
| 7  | Simulating cerebral edema and delayed fatality after traumatic brain injury using triphasic swelling<br>biomechanics. Traffic Injury Prevention, 2019, 20, 820-825.                                      | 0.6 | 7         |
| 8  | Mechanical Stretch of High Magnitude Provokes Axonal Injury, Elongation of Paranodal Junctions,<br>and Signaling Alterations in Oligodendrocytes. Molecular Neurobiology, 2019, 56, 4231-4248.           | 1.9 | 14        |
| 9  | Forward/editorial to accompany CNS injury special issue. Clinical Biomechanics, 2019, 64, 1.                                                                                                             | 0.5 | 0         |
| 10 | Acute vitreoretinal trauma and inflammation after traumatic brain injury in mice. Annals of Clinical and Translational Neurology, 2018, 5, 240-251.                                                      | 1.7 | 19        |
| 11 | Cypin: A novel target for traumatic brain injury. Neurobiology of Disease, 2018, 119, 13-25.                                                                                                             | 2.1 | 11        |
| 12 | Strong Correlation of Genome-Wide Expression after Traumatic Brain InjuryIn VitroandIn<br>VivoImplicates a Role for SORLA. Journal of Neurotrauma, 2017, 34, 97-108.                                     | 1.7 | 15        |
| 13 | Electrophysiological and Pathological Characterization of the Period of Heightened Vulnerability to<br>Repetitive Injury in an <i>in Vitro</i> Stretch Model. Journal of Neurotrauma, 2017, 34, 914-924. | 1.7 | 18        |
| 14 | Phosphodiesterase-4 inhibition restored hippocampal long term potentiation after primary blast.<br>Experimental Neurology, 2017, 293, 91-100.                                                            | 2.0 | 15        |
| 15 | Regional mechanical properties of human brain tissue for computational models of traumatic brain injury. Acta Biomaterialia, 2017, 55, 333-339.                                                          | 4.1 | 70        |
| 16 | Memantine Reduced Cell Death, Astrogliosis, and Functional Deficits in an <i>in vitro</i> Model of<br>Repetitive Mild Traumatic Brain Injury. Journal of Neurotrauma, 2017, 34, 934-942.                 | 1.7 | 22        |
| 17 | Primary Blast Injury Depressed Hippocampal Long-Term Potentiation through Disruption of Synaptic<br>Proteins. Journal of Neurotrauma, 2017, 34, 1063-1073.                                               | 1.7 | 28        |
| 18 | Intracerebroventricular administration of chondroitinase ABC reduces acute edema after traumatic<br>brain injury in mice. BMC Research Notes, 2016, 9, 160.                                              | 0.6 | 12        |

| #  | Article                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Bioorthogonal chemical imaging of metabolic activities in live mammalian hippocampal tissues with stimulated Raman scattering. Scientific Reports, 2016, 6, 39660.                                                                                           | 1.6 | 60        |
| 20 | Primary blast injury causes cognitive impairments and hippocampal circuit alterations. Experimental Neurology, 2016, 283, 16-28.                                                                                                                             | 2.0 | 29        |
| 21 | Isolated Primary Blast Inhibits Long-Term Potentiation in Organotypic Hippocampal Slice Cultures.<br>Journal of Neurotrauma, 2016, 33, 652-661.                                                                                                              | 1.7 | 29        |
| 22 | Primary Blast Exposure Increases Hippocampal Vulnerability to Subsequent Exposure: Reducing<br>Long-Term Potentiation. Journal of Neurotrauma, 2016, 33, 1901-1912.                                                                                          | 1.7 | 29        |
| 23 | Alterations in Hippocampal Network Activity after <i>In Vitro</i> Traumatic Brain Injury. Journal of Neurotrauma, 2015, 32, 1011-1019.                                                                                                                       | 1.7 | 32        |
| 24 | Predicting changes in cortical electrophysiological function after in vitro traumatic brain injury.<br>Biomechanics and Modeling in Mechanobiology, 2015, 14, 1033-1044.                                                                                     | 1.4 | 9         |
| 25 | Dexamethasone Potentiates in <i>Vitro</i> Blood-Brain Barrier Recovery after Primary Blast Injury by<br>Glucocorticoid Receptor-Mediated Upregulation of ZO-1 Tight Junction Protein. Journal of Cerebral<br>Blood Flow and Metabolism, 2015, 35, 1191-1198. | 2.4 | 73        |
| 26 | A Combination Therapy of 17β-Estradiol and Memantine Is More Neuroprotective Than Monotherapies in<br>an Organotypic Brain Slice Culture Model of Traumatic Brain Injury. Journal of Neurotrauma, 2015, 32,<br>1361-1368.                                    | 1.7 | 16        |
| 27 | Functional tolerance to mechanical deformation developed from organotypic hippocampal slice cultures. Biomechanics and Modeling in Mechanobiology, 2015, 14, 561-575.                                                                                        | 1.4 | 22        |
| 28 | An open-source toolbox for automated phenotyping of mice in behavioral tasks. Frontiers in<br>Behavioral Neuroscience, 2014, 8, 349.                                                                                                                         | 1.0 | 92        |
| 29 | Brain-on-a-chip microsystem for investigating traumatic brain injury: Axon diameter and<br>mitochondrial membrane changes play a significant role in axonal response to strain injuries.<br>Technology, 2014, 02, 106-117.                                   | 1.4 | 32        |
| 30 | The Mechanics of Traumatic Brain Injury: A Review of What We Know and What We Need to Know for Reducing Its Societal Burden. Journal of Biomechanical Engineering, 2014, 136, 021008.                                                                        | 0.6 | 179       |
| 31 | Significant Head Accelerations Can Influence Immediate Neurological Impairments in a Murine Model of Blast-Induced Traumatic Brain Injury. Journal of Biomechanical Engineering, 2014, 136, 091004.                                                          | 0.6 | 49        |
| 32 | Isolated Primary Blast Alters Neuronal Function with Minimal Cell Death in Organotypic Hippocampal<br>Slice Cultures. Journal of Neurotrauma, 2014, 31, 1202-1210.                                                                                           | 1.7 | 43        |
| 33 | Repeated Primary Blast Injury Causes Delayed Recovery, but not Additive Disruption, in an <i>In<br/>Vitro</i> Blood–Brain Barrier Model. Journal of Neurotrauma, 2014, 31, 951-960.                                                                          | 1.7 | 28        |
| 34 | GPR30 activation is neither necessary nor sufficient for acute neuroprotection by 17β-estradiol after<br>an ischemic injury in organotypic hippocampal slice cultures. Brain Research, 2014, 1563, 131-137.                                                  | 1.1 | 19        |
| 35 | Neuroprotection by genipin against reactive oxygen and reactive nitrogen species-mediated injury in organotypic hippocampal slice cultures. Brain Research, 2014, 1543, 308-314.                                                                             | 1.1 | 38        |
| 36 | Non-ideal effects in indentation testing of soft tissues. Biomechanics and Modeling in<br>Mechanobiology, 2014, 13, 573-584.                                                                                                                                 | 1.4 | 30        |

| #  | Article                                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Why Is CA3 More Vulnerable Than CA1 in Experimental Models of Controlled Cortical Impact-Induced<br>Brain Injury?. Journal of Neurotrauma, 2013, 30, 1521-1530.                                                                                     | 1.7  | 41        |
| 38 | An organotypic uniaxial strain model using microfluidics. Lab on A Chip, 2013, 13, 432-442.                                                                                                                                                         | 3.1  | 44        |
| 39 | An experimental study on the stiffness of size-isolated microbubbles using atomic force microscopy.<br>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2013, 60, 524-534.                                                  | 1.7  | 31        |
| 40 | Antagonism of purinergic signalling improves recovery from traumatic brain injury. Brain, 2013, 136, 65-80.                                                                                                                                         | 3.7  | 73        |
| 41 | Viscoelastic Properties of the P17 and Adult Rat Brain From Indentation in the Coronal Plane. Journal of Biomechanical Engineering, 2013, 135, 114507.                                                                                              | 0.6  | 37        |
| 42 | Blood-Brain Barrier Dysfunction after Primary Blast Injury <i>in vitro</i> . Journal of Neurotrauma, 2013, 30, 1652-1663.                                                                                                                           | 1.7  | 54        |
| 43 | An experimental study on the apparent stiffness of size-isolated microbubbles used for blood-brain barrier opening applications. , 2012, , .                                                                                                        |      | 0         |
| 44 | Activation of signaling pathways following localized delivery of systemically administered<br>neurotrophic factors across the blood–brain barrier using focused ultrasound and microbubbles.<br>Physics in Medicine and Biology, 2012, 57, N65-N81. | 1.6  | 102       |
| 45 | Interleukin-1beta does not affect the energy metabolism of rat organotypic hippocampal-slice cultures. Neuroscience Letters, 2012, 508, 114-118.                                                                                                    | 1.0  | 1         |
| 46 | Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell, 2012, 149, 1060-1072.                                                                                                                                                         | 13.5 | 9,007     |
| 47 | A Multiscale Approach to Blast Neurotrauma Modeling: Part II: Methodology for Inducing Blast Injury<br>to in vitro Models. Frontiers in Neurology, 2012, 3, 23.                                                                                     | 1.1  | 59        |
| 48 | A Multiscale Approach to Blast Neurotrauma Modeling: Part I – Development of Novel Test Devices for<br>in vivo and in vitro Blast Injury Models. Frontiers in Neurology, 2012, 3, 46.                                                               | 1.1  | 49        |
| 49 | Mechanics of cell growth. Mechanics Research Communications, 2012, 42, 118-125.                                                                                                                                                                     | 1.0  | 23        |
| 50 | Vertically aligned carbon nanofiber as nano-neuron interface for monitoring neural function.<br>Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 419-423.                                                                              | 1.7  | 22        |
| 51 | Encapsulating Elastically Stretchable Neural Interfaces: Yield, Resolution, and Recording/Stimulation of Neural Activity. Advanced Functional Materials, 2012, 22, 640-651.                                                                         | 7.8  | 45        |
| 52 | Viscoelastic Properties of the Rat Brain in the Sagittal Plane: Effects of Anatomical Structure and Age.<br>Annals of Biomedical Engineering, 2012, 40, 70-78.                                                                                      | 1.3  | 61        |
| 53 | An Unusual Cell Penetrating Peptide Identified Using a Plasmid Display-Based Functional Selection<br>Platform. ACS Chemical Biology, 2011, 6, 484-491.                                                                                              | 1.6  | 36        |
| 54 | Chondroitinase ABC Reduces Brain Tissue Swelling <i>In Vitro</i> . Journal of Neurotrauma, 2011, 28, 2277-2285.                                                                                                                                     | 1.7  | 11        |

| #  | Article                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | In Vitro Models for Biomechanical Studies of Neural Tissues. Studies in Mechanobiology, Tissue<br>Engineering and Biomaterials, 2011, , 247-285.                                                                                                    | 0.7 | 16        |
| 56 | In Vitro Models of Traumatic Brain Injury. Annual Review of Biomedical Engineering, 2011, 13, 91-126.                                                                                                                                               | 5.7 | 220       |
| 57 | TAT Is Not Capable of Transcellular Delivery Across an Intact Endothelial Monolayer In Vitro. Annals<br>of Biomedical Engineering, 2011, 39, 394-401.                                                                                               | 1.3 | 29        |
| 58 | Attenuation of Astrocyte Activation by TAT-Mediated Delivery of a Peptide JNK Inhibitor. Journal of Neurotrauma, 2011, 28, 1219-1228.                                                                                                               | 1.7 | 8         |
| 59 | A Detailed Viscoelastic Characterization of the P17 and Adult Rat Brain. Journal of Neurotrauma, 2011, 28, 2235-2244.                                                                                                                               | 1.7 | 80        |
| 60 | Dynamic, Regional Mechanical Properties of the Porcine Brain: Indentation in the Coronal Plane.<br>Journal of Biomechanical Engineering, 2011, 133, 071009.                                                                                         | 0.6 | 69        |
| 61 | Permeability of Endothelial and Astrocyte Cocultures: In Vitro Blood–Brain Barrier Models for Drug<br>Delivery Studies. Annals of Biomedical Engineering, 2010, 38, 2499-2511.                                                                      | 1.3 | 201       |
| 62 | Modeling of Active Transmembrane Transport in a Mixture Theory Framework. Annals of Biomedical<br>Engineering, 2010, 38, 1801-1814.                                                                                                                 | 1.3 | 9         |
| 63 | Flexible and stretchable micro-electrodes for in vitro and in vivo neural interfaces. Medical and<br>Biological Engineering and Computing, 2010, 48, 945-954.                                                                                       | 1.6 | 226       |
| 64 | A plasmid display platform for the selection of peptides exhibiting a functional cellâ€penetrating phenotype. Biotechnology Progress, 2010, 26, 1796-1800.                                                                                          | 1.3 | 5         |
| 65 | Molecules of Various Pharmacologically-Relevant Sizes Can Cross the Ultrasound-Induced<br>Blood-Brain Barrier Opening in vivo. Ultrasound in Medicine and Biology, 2010, 36, 58-67.                                                                 | 0.7 | 170       |
| 66 | Experimental Mild Traumatic Brain Injury Induces Functional Alteration of the Developing<br>Hippocampus. Journal of Neurophysiology, 2010, 103, 499-510.                                                                                            | 0.9 | 42        |
| 67 | Fixed negative charge and the Donnan effect: aÂdescription of the driving forces associated with brain<br>tissue swelling andAoedema. Philosophical Transactions Series A, Mathematical, Physical, and<br>Engineering Sciences, 2010, 368, 585-603. | 1.6 | 44        |
| 68 | Age-Dependent Regional Mechanical Properties of the Rat Hippocampus and Cortex. Journal of<br>Biomechanical Engineering, 2010, 132, 011010.                                                                                                         | 0.6 | 124       |
| 69 | 8.12: Presentation session: Brain injuries and neuro-regeneration panel: "Basic research to reduce the socioeconomic costs of traumatic brain injury". , 2010, , .                                                                                  |     | 0         |
| 70 | Activated astrocytes and TAT transduction after in vitro traumatic mechanical injury. , 2010, , .                                                                                                                                                   |     | 0         |
| 71 | Increased delivery of TAT across an endothelial monolayer following ischemic injury. Neuroscience<br>Letters, 2010, 486, 1-4.                                                                                                                       | 1.0 | 20        |
| 72 | Permeability of in vitro blood-brain barrier models. , 2010, , .                                                                                                                                                                                    |     | 0         |

Permeability of in vitro blood-brain barrier models. , 2010, , . 72

| #  | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Vertically aligned carbon nanofiber neural chip for interfacing with neurological system. , 2010, , .                                                                                                                                    |     | 0         |
| 74 | Neural sensing of electrical activity with stretchable microelectrode arrays. , 2009, 2009, 4210-3.                                                                                                                                      |     | 4         |
| 75 | Modeling traumatic brain injury in vitro: Functional changes in the absence of cell death. , 2009, , .                                                                                                                                   |     | 4         |
| 76 | Continuum Modeling of Biological Tissue Growth by Cell Division, and Alteration of Intracellular<br>Osmolytes and Extracellular Fixed Charge Density. Journal of Biomechanical Engineering, 2009, 131,<br>101001.                        | 0.6 | 35        |
| 77 | Monitoring Hippocampus Electrical Activity <i>In Vitro</i> on an Elastically Deformable<br>Microelectrode Array. Journal of Neurotrauma, 2009, 26, 1135-1145.                                                                            | 1.7 | 61        |
| 78 | Bioeffective Ultrasound at Very Low Doses: Reversible Manipulation of Neuronal Cell Morphology and Function in Vitro. , 2009, , .                                                                                                        |     | 18        |
| 79 | TATâ€mediated intracellular protein delivery to primary brain cells is dependent on glycosaminoglycan<br>expression. Biotechnology and Bioengineering, 2009, 104, 10-19.                                                                 | 1.7 | 25        |
| 80 | Bifunctional chimeric fusion proteins engineered for DNA delivery: Optimization of the protein to DNA ratio. Biochimica Et Biophysica Acta - General Subjects, 2009, 1790, 198-207.                                                      | 1.1 | 15        |
| 81 | Bioeffects of low dose ultrasound on neuronal cell function. , 2009, , .                                                                                                                                                                 |     | 5         |
| 82 | Quantification of functional aalterations after in vitro traumatic brain injury. , 2009, 2009, 1135-8.                                                                                                                                   |     | 8         |
| 83 | Delivery of fluorescent dextrans through the ultrasound-induced blood-brain barrier opening in mice. , 2008, , .                                                                                                                         |     | Ο         |
| 84 | Mechanical Heterogeneity of the Rat Hippocampus Measured by Atomic Force Microscope Indentation.<br>Journal of Neurotrauma, 2007, 24, 812-822.                                                                                           | 1.7 | 280       |
| 85 | Advances in Encapsulating Elastically Stretchable Microelectrode Arrays. Materials Research Society<br>Symposia Proceedings, 2007, 1009, 1.                                                                                              | 0.1 | 1         |
| 86 | Vertically Aligned Carbon Nanofiber Arrays Record Electrophysiological Signals from Hippocampal<br>Slices. Nano Letters, 2007, 7, 2188-2195.                                                                                             | 4.5 | 123       |
| 87 | Stretch-induced injury in organotypic hippocampal slice cultures reproduces in vivo post-traumatic neurodegeneration: role of glutamate receptors and voltage-dependent calcium channels. Journal of Neurochemistry, 2007, 101, 434-447. | 2.1 | 48        |
| 88 | Region-specific tolerance criteria for the living brain. Stapp Car Crash Journal, 2007, 51, 127-38.                                                                                                                                      | 1.1 | 89        |
| 89 | Stretchable microelectrode arrays a tool for discovering mechanisms of functional deficits underlying traumatic brain injury and interfacing neurons with neuroprosthetics. , 2006, Suppl, 6732-5.                                       |     | 8         |
| 90 | An in vitro model of traumatic brain injury utilising two-dimensional stretch of organotypic hippocampal slice cultures. Journal of Neuroscience Methods, 2006, 150, 192-201.                                                            | 1.3 | 163       |

| #   | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Temporal development of hippocampal cell death is dependent on tissue strain but not strain rate.<br>Journal of Biomechanics, 2006, 39, 2810-2818.                                                                   | 0.9 | 122       |
| 92  | Monitoring of Traumatically Injured Organotypic Hippocampal Cultures with Stretchable<br>Microelectrode Arrays. Materials Research Society Symposia Proceedings, 2006, 926, 1.                                       | 0.1 | 1         |
| 93  | Organotypic cultures as tools for functional screening in the CNS. Drug Discovery Today, 2005, 10, 993-1000.                                                                                                         | 3.2 | 111       |
| 94  | Characterisation of a novel class of polyamine-based neuroprotective compounds.<br>Naunyn-Schmiedeberg's Archives of Pharmacology, 2003, 368, 216-224.                                                               | 1.4 | 4         |
| 95  | Lactate and glucose as energy substrates during, and after, oxygen deprivation in rat hippocampal acute and cultured slices. Journal of Neurochemistry, 2003, 87, 1381-1390.                                         | 2.1 | 74        |
| 96  | A tissue level tolerance criterion for living brain developed with an in vitro model of traumatic mechanical loading. Stapp Car Crash Journal, 2003, 47, 93-105.                                                     | 1.1 | 123       |
| 97  | L -Arginyl-3,4-Spermidine is neuroprotective in several in vitro models of neurodegeneration and in vivo ischaemia without suppressing synaptic transmission. British Journal of Pharmacology, 2002, 137, 1255-1268. | 2.7 | 36        |
| 98  | Dynamic Mechanical Stretch of Organotypic Brain Slice Cultures Induces Differential Genomic<br>Expression: Relationship to Mechanical Parameters. Journal of Biomechanical Engineering, 2000, 122,<br>224-230.       | 0.6 | 55        |
| 99  | <i>In Vitro</i> Central Nervous System Models of Mechanically Induced Trauma: A Review. Journal of Neurotrauma, 1998, 15, 911-928.                                                                                   | 1.7 | 182       |
| 100 | A Tissue Level Tolerance Criterion for Living Brain Developed with an In Vitro Model of Traumatic<br>Mechanical Loading. , 0, , .                                                                                    |     | 62        |
| 101 | Region-Specific Tolerance Criteria for the Living Brain. , 0, , .                                                                                                                                                    |     | 44        |