Jun Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1281277/publications.pdf

Version: 2024-02-01

		361413	254184
55	1,998	20	43
papers	citations	h-index	g-index
55	55	55	2478
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Advances in Rapid Detection Methods for Foodborne Pathogens. Journal of Microbiology and Biotechnology, 2014, 24, 297-312.	2.1	528
2	Biofilm formation and control strategies of foodborne pathogens: food safety perspectives. RSC Advances, 2017, 7, 36670-36683.	3.6	175
3	Application of atmospheric cold plasma-activated water (PAW) ice for preservation of shrimps (Metapenaeus ensis). Food Control, 2018, 94, 307-314.	5 . 5	135
4	Simultaneous determination of 38 veterinary antibiotic residues in raw milk by UPLC–MS/MS. Food Chemistry, 2015, 181, 119-126.	8.2	111
5	Effects of Nonthermal Plasma Technology on Functional Food Components. Comprehensive Reviews in Food Science and Food Safety, 2018, 17, 1379-1394.	11.7	87
6	Inhibitory Effect of Lactic Acid Bacteria on Foodborne Pathogens: A Review. Journal of Food Protection, 2019, 82, 441-453.	1.7	86
7	Synergistic effect of low concentration electrolyzed water and calcium lactate to ensure microbial safety, shelf life and sensory quality of fresh pork. Food Control, 2013, 30, 176-183.	5.5	63
8	Risk assessment for Listeria monocytogenes on lettuce from farm to table in Korea. Food Control, 2013, 30, 190-199.	5.5	54
9	Recent advances and applications of graphene-based extraction materials in food safety. TrAC - Trends in Analytical Chemistry, 2019, 119, 115603.	11.4	51
10	Stability of low concentration electrolyzed water and its sanitization potential against foodborne pathogens. Journal of Food Engineering, 2012, 113, 548-553.	5.2	46
11	Antimicrobial resistance and virulence genes of Streptococcus isolated from dairy cows with mastitis in China. Microbial Pathogenesis, 2019, 131, 33-39.	2.9	43
12	Effect of dielectric barrier discharge plasma on background microflora and physicochemical properties of tiger nut milk. Food Control, 2019, 96, 119-127.	5 . 5	43
13	A combined hurdle approach of slightly acidic electrolyzed water simultaneous with ultrasound to inactivate Bacillus cereus on potato. LWT - Food Science and Technology, 2016, 73, 615-621.	5.2	42
14	Loop-Mediated Isothermal Amplification Assay Targeting the femA Gene for Rapid Detection of Staphylococcus aureus from Clinical and Food Samples. Journal of Microbiology and Biotechnology, 2013, 23, 246-250.	2.1	41
15	Combating Staphylococcus aureus and its methicillin resistance gene (mecA) with cold plasma. Science of the Total Environment, 2018, 645, 1287-1295.	8.0	38
16	Inactivation of Bacillus subtilis and quality assurance in Chinese bayberry (Myrica rubra) juice with ultrasound and mild heat. LWT - Food Science and Technology, 2019, 108, 113-119.	5.2	33
17	Prevalence and antimicrobial-resistance phenotypes and genotypes of Escherichia coli isolated from raw milk samples from mastitis cases in four regions of China. Journal of Global Antimicrobial Resistance, 2020, 22, 94-101.	2.2	31
18	Rapid Detection of Viable Escherichia coli O157 by Coupling Propidium Monoazide with Loop-Mediated Isothermal Amplification. Journal of Microbiology and Biotechnology, 2013, 23, 1708-1716.	2.1	30

#	Article	IF	CITATIONS
19	Application of plasma-activated water (PAW) for mitigating methicillin-resistant Staphylococcus aureus (MRSA) on cooked chicken surface. LWT - Food Science and Technology, 2021, 137, 110465.	5.2	28
20	Improved multiplex PCR assay for simultaneous detection of Bacillus cereus emetic and enterotoxic strains. Food Science and Biotechnology, 2012, 21, 1439-1444.	2.6	22
21	Predictive Models for the Growth Kinetics of <i><scp>L</scp>isteria monocytogenes</i> on White Cabbage. Journal of Food Safety, 2013, 33, 50-58.	2.3	20
22	Effect of Temperatures on the Growth, Toxin Production, and Heat Resistance of <i>Bacillus cereus</i> in Cooked Rice. Foodborne Pathogens and Disease, 2014, 11, 133-137.	1.8	18
23	Sequential treatment with slightly acidic electrolyzed water (SAEW) and UVC light-emitting diodes (UVC-LEDs) for decontamination of Salmonella Typhimurium on lettuce. Food Control, 2021, 123, 107738.	5.5	18
24	Development of Predictive Models for the Growth of <i>Escherichia coli</i> O157:H7 on Cabbage in Korea. Journal of Food Science, 2012, 77, M257-63.	3.1	17
25	Antibiotic Resistance Patterns of <i>Staphylococcus aureus</i> Isolates from Retail Foods in Mainland China: A Meta-Analysis. Foodborne Pathogens and Disease, 2020, 17, 296-307.	1.8	14
26	Modeling of Bacillus cereus Growth in Brown Rice Submitted to a Combination of Ultrasonication and Slightly Acidic Electrolyzed Water Treatment. Journal of Food Protection, 2014, 77, 2043-2053.	1.7	13
27	Application of bacteriophage in rapid detection of Escherichia coli in foods. Current Opinion in Food Science, 2021, 39, 43-50.	8.0	13
28	Modeling the response of Listeria monocytogenes at various storage temperatures in pork with/without electrolyzed water treatment. Food Science and Biotechnology, 2012, 21, 1549-1555.	2.6	11
29	Modeling the combined effect of temperature and relative humidity on Escherichia coli O157:H7 on lettuce. Food Science and Biotechnology, 2012, 21, 859-865.	2.6	11
30	Growth Model of Escherichia coli O157:H7 at Various Storage Temperatures on Kale Treated by Thermosonication Combined with Slightly Acidic Electrolyzed Water. Journal of Food Protection, 2014, 77, 23-31.	1.7	11
31	Inactivation of Staphylococcus aureus and Escherichia coli in milk by different processing sequences of ultrasound and heat. Journal of Food Safety, 2019, 39, e12614.	2.3	11
32	EFFECT OF TEMPERATURE AND RELATIVE HUMIDITY ON GROWTH BEHAVIOR OF <i>ESCHERICHIA COLI</i> O157:H7 ON SPINACH USING RESPONSE SURFACE METHODOLOGY. Journal of Food Safety, 2012, 32, 296-304.	2.3	10
33	Assessment of Enterotoxin Production and Crossâ€Contamination of <i>Staphylococcus aureus</i> between Food Processing Materials and Readyâ€Toâ€Eat Cooked Fish Paste. Journal of Food Science, 2015, 80, M2911-6.	3.1	10
34	A Novel Approach to Predict the Growth of Staphylococcus aureus on Rice Cake. Frontiers in Microbiology, 2017, 8, 1140.	3.5	10
35	Survey of Veterinary Drug Residues in Raw Milk in Hebei Province, China. Journal of Food Protection, 2017, 80, 1890-1896.	1.7	10
36	Effects of partial replacement of sodium nitrite with Lactobacillus pentosus inoculation on quality of fermented sausages. Journal of Food Processing and Preservation, 2019, 43, e13932.	2.0	10

#	Article	IF	Citations
37	Addition of olive (olea europaea) leaf extract as a source of natural antioxidant in mutton meatball stored at refrigeration temperature. Journal of Food Science and Technology, 2021, 58, 4002-4010.	2.8	10
38	Optimization of inactivation of Staphylococcus aureus by low concentration electrolyzed water using response surface methodology. Food Science and Biotechnology, 2011, 20, 1367-1371.	2.6	9
39	Modeling the effect of temperature and relative humidity on the growth of Staphylococcus aureus on fresh-cut spinach using a user-friendly software. Food Science and Biotechnology, 2011, 20, 1593-1597.	2.6	9
40	Microbiological Analysis of Rice Cake Processing in Korea. Journal of Food Protection, 2016, 79, 157-162.	1.7	9
41	Experimental studies and modeling the behavior of anaerobic growth of Clostridium perfringens in cooked rice under non-isothermal conditions. Food Control, 2017, 71, 137-142.	5.5	9
42	Analysis of Veterinary Drug Residues in Pasteurized Milk Samples in Chinese Milk Bars. Journal of Food Protection, 2020, 83, 204-210.	1.7	8
43	Distribution and variation in proteins of casein micellar fractions response to heat-treatment from five dairy species. Food Chemistry, 2021, 365, 130640.	8.2	8
44	Development of Predictive Models for the Growth Kinetics of Listeria monocytogenes on Fresh Pork under Different Storage Temperatures. Journal of Food Protection, 2015, 78, 921-926.	1.7	7
45	Occurrence, Antimicrobial Resistance Patterns, and Genetic Characterization of <i>Staphylococcus aureus</i> Isolated from Raw Milk in the Dairy Farms over Two Seasons in China. Microbial Drug Resistance, 2021, 27, 99-110.	2.0	7
46	Elimination kinetics of ceftiofur hydrochloride in milk after an 8-day extended intramammary administration in healthy and infected cows. PLoS ONE, 2017, 12, e0187261.	2.5	6
47	A Probability Model for Enterotoxin Production of Bacillus cereus as a Function of pH and Temperature. Journal of Food Protection, 2013, 76, 343-347.	1.7	5
48	Analysis of Microbiological Contamination in Mixed Pressed Ham and Cooked Sausage in Korea. Journal of Food Protection, 2014, 77, 412-418.	1.7	4
49	A Survey of 61 Veterinary Drug Residues in Commercial Liquid Milk Products in China. Journal of Food Protection, 2020, 83, 1227-1233.	1.7	4
50	Removal of Pesticide on Food by Electrolyzed Water. , 2019, , 39-65.		3
51	Development of predictive models for egg freshness and shelf-life under different storage temperatures. Food Quality and Safety, 2021, 5, .	1.8	3
52	Prevalence, Drug Resistance, and Virulence Genes of Potential Pathogenic Bacteria in Pasteurized Milk of Chinese Fresh Milk Bar. Journal of Food Protection, 2021, 84, 1863-1867.	1.7	2
53	Evaluation of anhydrous processing and storage methods of the temperate bacteriophage É,V10 for integration into foodborne pathogen detection methodologies. PLoS ONE, 2021, 16, e0249473.	2.5	1
54	Survey of Aflatoxin M1 in Commercial Liquid Milk Products in China. Journal of Food Protection, 2021, 84, 200-203.	1.7	0

#	Article	IF	CITATIONS
55	Editorial: Technological Advances in Microbiological Risk Assessment. Frontiers in Microbiology, 2022, 13, 872879.	3.5	O