
Nicolas Tapon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/128097/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	salvador Promotes Both Cell Cycle Exit and Apoptosis in Drosophila and Is Mutated in Human Cancer Cell Lines. Cell, 2002, 110, 467-478.	13.5	755
2	Rac and Cdc42 Induce Actin Polymerization and G1 Cell Cycle Progression Independently of p65PAK and the JNK/SAPK MAP Kinase Cascade. Cell, 1996, 87, 519-529.	13.5	590
3	The Salvador–Warts–Hippo pathway — an emerging tumour-suppressor network. Nature Reviews Cancer, 2007, 7, 182-191.	12.8	576
4	The Drosophila Tuberous Sclerosis Complex Gene Homologs Restrict Cell Growth and Cell Proliferation. Cell, 2001, 105, 345-355.	13.5	516
5	The Salvador partner Hippo promotes apoptosis and cell-cycle exit in Drosophila. Nature Cell Biology, 2003, 5, 921-927.	4.6	502
6	Kibra Is a Regulator of the Salvador/Warts/Hippo Signaling Network. Developmental Cell, 2010, 18, 300-308.	3.1	356
7	The Hippo pathway regulates intestinal stem cell proliferation during <i>Drosophila</i> adult midgut regeneration. Development (Cambridge), 2010, 137, 4147-4158.	1.2	282
8	Differential proliferation rates generate patterns of mechanical tension that orient tissue growth. EMBO Journal, 2013, 32, 2790-2803.	3.5	277
9	A Genome-Wide RNAi Screen to Dissect Centriole Duplication and Centrosome Maturation in Drosophila. PLoS Biology, 2008, 6, e224.	2.6	216
10	Combined Functional Genomic and Proteomic Approaches Identify a PP2A Complex as a Negative Regulator of Hippo Signaling. Molecular Cell, 2010, 39, 521-534.	4.5	212
11	A programmed cell death pathway activated in carrot cells cultured at low cell density. Plant Journal, 1997, 12, 267-280.	2.8	210
12	Planar polarization of the atypical myosin Dachs orients cell divisions in <i>Drosophila</i> . Genes and Development, 2011, 25, 131-136.	2.7	205
13	The Hippo pathway and apico–basal cell polarity. Biochemical Journal, 2011, 436, 213-224.	1.7	148
14	The Drosophila RASSF Homolog Antagonizes the Hippo Pathway. Current Biology, 2006, 16, 2459-2465.	1.8	144
15	Sensing the local environment: actin architecture and Hippo signalling. Current Opinion in Cell Biology, 2014, 31, 74-83.	2.6	143
16	Salvador-Warts-Hippo Signaling Promotes Drosophila Posterior Follicle Cell Maturation Downstream of Notch. Current Biology, 2007, 17, 1864-1870.	1.8	124
17	The Hippo pathway polarizes the actin cytoskeleton during collective migration of <i>Drosophila</i> border cells. Journal of Cell Biology, 2013, 201, 875-885.	2.3	115
18	EpiTools: An Open-Source Image Analysis Toolkit for Quantifying Epithelial Growth Dynamics. Developmental Cell, 2016, 36, 103-116.	3.1	102

NICOLAS TAPON

#	Article	IF	CITATIONS
19	The Hippo pathway regulates apical-domain size independently of its growth-control function. Journal of Cell Science, 2009, 122, 2360-2370.	1.2	99
20	Salt-inducible kinases regulate growth through the Hippo signalling pathway in Drosophila. Nature Cell Biology, 2013, 15, 61-71.	4.6	90
21	Capicua Regulates Cell Proliferation Downstream of the Receptor Tyrosine Kinase/Ras Signaling Pathway. Current Biology, 2007, 17, 728-733.	1.8	89
22	Hippo signalling during development. Development (Cambridge), 2019, 146, .	1.2	83
23	The coupling of cell growth to the cell cycle. Current Opinion in Cell Biology, 2001, 13, 731-737.	2.6	69
24	Upstairs, downstairs: spatial regulation of Hippo signalling. Current Opinion in Cell Biology, 2018, 51, 22-32.	2.6	64
25	Dmp53 Activates the Hippo Pathway to Promote Cell Death in Response to DNA Damage. Current Biology, 2006, 16, 1453-1458.	1.8	58
26	Crumbs promotes expanded recognition and degradation by the SCF ^{Slimb/β-TrCP} ubiquitin ligase. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1980-9.	3.3	53
27	Zyxin Antagonizes the FERM Protein Expanded to Couple F-Actin and Yorkie-Dependent Organ Growth. Current Biology, 2015, 25, 679-689.	1.8	50
28	Differential control of Yorkie activity by LKB1/AMPK and the Hippo/Warts cascade in the central nervous system. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5169-78.	3.3	45
29	ASPP proteins discriminate between PP1 catalytic subunits through their SH3 domain and the PP1 C-tail. Nature Communications, 2019, 10, 771.	5.8	44
30	The dASPP-dRASSF8 Complex Regulates Cell-Cell Adhesion during Drosophila Retinal Morphogenesis. Current Biology, 2009, 19, 1969-1978.	1.8	41
31	Drosophila ASPP Regulates C-Terminal Src Kinase Activity. Developmental Cell, 2007, 13, 773-782.	3.1	40
32	The Hippo Pathway Core Cassette Regulates Asymmetric Cell Division. Current Biology, 2015, 25, 2739-2750.	1.8	38
33	Drosophila MFAP1 Is Required for Pre-mRNA Processing and G2/M Progression. Journal of Biological Chemistry, 2008, 283, 31256-31267.	1.6	35
34	Stable MOB1 interaction with Hippo/MST is not essential for development and tissue growth control. Nature Communications, 2017, 8, 695.	5.8	32
35	Drosophila MAGI interacts with RASSF8 to regulate E-Cadherin-based adherens junctions in the developing eye. Development (Cambridge), 2015, 142, 1102-12.	1.2	22
36	<i>Drosophila</i> MCRS2 Associates with RNA Polymerase II Complexes To Regulate Transcription. Molecular and Cellular Biology, 2010, 30, 4744-4755.	1.1	20

NICOLAS TAPON

#	Article	IF	CITATIONS
37	Hippo Stabilises Its Adaptor Salvador by Antagonising the HECT Ubiquitin Ligase Herc4. PLoS ONE, 2015, 10, e0131113.	1.1	20
38	The Hippo pathway—From top to bottom and everything in between. Seminars in Cell and Developmental Biology, 2012, 23, 768-769.	2.3	16
39	Modeling transformation and metastasis in Drosophila. Cancer Cell, 2003, 4, 333-335.	7.7	14
40	Meru couples planar cell polarity with apical-basal polarity during asymmetric cell division. ELife, 2017, 6, .	2.8	14
41	Casein kinase 1 family proteins promote Slimb-dependent Expanded degradation. ELife, 2019, 8, .	2.8	13
42	ECM degradation in the Drosophila abdominal epidermis initiates tissue growth that ceases with rapid cell-cycle exit. Current Biology, 2022, 32, 1285-1300.e4.	1.8	13
43	Formation of a Polarised Primitive Endoderm Layer in Embryoid Bodies Requires Fgfr/Erk Signalling. PLoS ONE, 2014, 9, e95434.	1.1	8
44	RASSF8-mediated transport of Echinoid via the exocyst promotes <i>Drosophila</i> wing elongation and epithelial ordering. Development (Cambridge), 2021, 148, .	1.2	3