
ZoltÃ;n Szalai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/127988/publications.pdf Version: 2024-02-01

ZOLTÃ:N SZALAL

#	Article	IF	CITATIONS
1	Pharmaceuticals in water and sediment of small streams under the pressure of urbanization: Concentrations, interactions, and risks. Science of the Total Environment, 2022, 808, 152160.	8.0	22
2	Chemical composition of labile carbon fractions in Hungarian forest soils: Insight into biogeochemical coupling between DOM and POM. Geoderma, 2022, 419, 115867.	5.1	15
3	Effects of pharmaceutically active compounds (PhACs) on fish body and scale shape in natural waters. PeerJ, 2021, 9, e10642.	2.0	8
4	Long-term effects of conservation tillage on soil erosion in Central Europe: A random forest-based approach. Soil and Tillage Research, 2021, 209, 104959.	5.6	29
5	Evaluation of the effect of the intrinsic chemical properties of pharmaceutically active compounds (PhACs) on sorption behaviour in soils and goethite. Ecotoxicology and Environmental Safety, 2021, 215, 112120.	6.0	16
6	Accelerated soil development due to seasonal water-saturation under hydric conditions. Geoderma, 2021, 401, 115328.	5.1	7
7	Comparison of the Applicability of Different Soil Erosion Models to Predict Soil Erodibility Factor and Event Soil Losses on Loess Slopes in Hungary. Water (Switzerland), 2021, 13, 3517.	2.7	8
8	Natural and anthropogenic impacts reflected by paleoclimate proxy parameters in a lake-forest system in Bukovina, Romania. Hungarian Geographical Bulletin, 2021, 70, 339-351.	0.9	1
9	Vertical differentiation of pedogenic iron forms – a key of hydromorphic soil profile development. Hungarian Geographical Bulletin, 2021, 70, 369-380.	0.9	3
10	Investigation of the sorption of 17α-ethynylestradiol (EE2) on soils formed under aerobic and anaerobic conditions. Chemosphere, 2020, 240, 124817.	8.2	5
11	Thermal baths as sources of pharmaceutical and illicit drug contamination. Environmental Science and Pollution Research, 2020, 27, 399-410.	5.3	13
12	Carbon Isotope Measurements to Determine the Turnover of Soil Organic Matter Fractions in a Temperate Forest Soil. Agronomy, 2020, 10, 1944.	3.0	5
13	The Use of Various Rainfall Simulators in the Determination of the Driving Forces of Changes in Sediment Concentration and Clay Enrichment. Water (Switzerland), 2020, 12, 2856.	2.7	7
14	Cold, Dry, Windy, and UV Irradiated: Surveying Mars-Relevant Conditions in Ojos del Salado Volcano (Andes Mountains, Chile). Astrobiology, 2020, 20, 677-683.	3.0	9
15	Occurrence of pharmaceuticals in the Danube and drinking water wells: Efficiency of riverbank filtration. Environmental Pollution, 2020, 265, 114893.	7.5	46
16	Rare earth oxide tracking coupled with 3D soil surface modelling: an opportunity to study small-scale soil redistribution. Journal of Soils and Sediments, 2020, 20, 2405-2417.	3.0	2
17	Comparison of Soil Bacterial Communities from Juvenile Maize Plants of a Long-Term Monoculture and a Natural Grassland. Agronomy, 2020, 10, 341.	3.0	6
18	Analog Site Experiment in the High Andes-Atacama Region: Surface Energy Budget Components on Ojos del Salado from Field Measurements and WRF Simulations. Astrobiology, 2020, 20, 684-700.	3.0	2

ZoltÃin Szalai

#	Article	IF	CITATIONS
19	On the reliability and comparability of laser diffraction grain size measurements of paleosols in loess records. Sedimentary Geology, 2019, 389, 42-53.	2.1	21
20	Spatial and Temporal Changes in Infiltration and Aggregate Stability: A Case Study of a Subhumid Irrigated Cropland. Water (Switzerland), 2019, 11, 876.	2.7	7
21	Differences in Mineral Phase Associated Soil Organic Matter Composition due to Varying Tillage Intensity. Agronomy, 2019, 9, 700.	3.0	10
22	Shallow ground temperature measurements on the highest volcano on Earth, Mt. Ojos del Salado, Arid Andes, Chile. Permafrost and Periglacial Processes, 2019, 30, 3-18.	3.4	20
23	Granulometric properties of particles in Upper Miocene sandstones from thin sections, Szolnok Formation, Hungary. Hungarian Geographical Bulletin, 2019, 68, 341-353.	0.9	5
24	Different land-use intensities and their susceptibility to soil erosion. Agrokemia Es Talajtan, 2019, 68, 14-23.	0.2	2
25	Granulometric characterization of paleosols in loess series by automated static image analysis. Sedimentary Geology, 2018, 370, 1-14.	2.1	26
26	A 300-year record of sedimentation in a small tilled catena in Hungary based on δ13C, δ15N, and C/N distribution. Journal of Soils and Sediments, 2018, 18, 1767-1779.	3.0	4
27	Fallout isotope chronology of the near-surface sediment record of Lake BolÄftÄfu. Journal of Environmental Radioactivity, 2018, 181, 32-41.	1.7	1
28	Soil Organic Matter Alteration Velocity due to Land-Use Change: A Case Study under Conservation Agriculture. Sustainability, 2018, 10, 943.	3.2	9
29	Kinetic parameters of soil organic matter decomposition in soils under forest in Hungary. Geoderma Regional, 2018, 14, e00187.	2.1	18
30	Fluvial or aeolian grains? Separation of transport agents on Mars using earth analogue observations. Planetary and Space Science, 2018, 163, 56-76.	1.7	15
31	Soil organic matter characterisation by photometric indices or photon correlation spectroscopy: are they comparable?. Hungarian Geographical Bulletin, 2018, 67, 109-120.	0.9	7
32	Effects of Particle Size on the Attenuated Total Reflection Spectrum of Minerals. Applied Spectroscopy, 2017, 71, 1157-1168.	2.2	58
33	Infiltration and Soil Loss Changes during the Growing Season under Ploughing and Conservation Tillage. Sustainability, 2017, 9, 1726.	3.2	30
34	Redistribution of Soil Organic Carbon Triggered by Erosion at Field Scale Under Subhumid Climate, Hungary. Pedosphere, 2016, 26, 652-665.	4.0	19
35	Saharan dust deposition in the Carpathian Basin and its possible effects on interglacial soil formation. Aeolian Research, 2016, 22, 1-12.	2.7	46
36	Changes in organic carbon concentration and organic matter compound of erosion-delivered soil aggregates. Environmental Earth Sciences, 2016, 75, 1.	2.7	16

ZOLTÃIN SZALAI

#	Article	IF	CITATIONS
37	Conservation tillage vs. conventional tillage: long-term effects on yields in continental, sub-humid Central Europe, Hungary. International Journal of Agricultural Sustainability, 2016, 14, 408-427.	3.5	18
38	The dissolved organic matter as a potential soil quality indicator in arable soils of Hungary. Environmental Monitoring and Assessment, 2015, 187, 479.	2.7	25
39	Soil erodibility calculations based on different particle size distribution measurements. Hungarian Geographical Bulletin, 2015, 64, 17-23.	0.9	16
40	COMPARISON OF PARTICLE-SIZE ANALYZING LABORATORY METHODS. Environmental Engineering and Management Journal, 2015, 14, 1125-1135.	0.6	23
41	Application of attenuated total reflectance Fourier transform infrared spectroscopy in the mineralogical study of a landslide area, Hungary. Sedimentary Geology, 2014, 313, 1-14.	2.1	30
42	Relationship between iron and trace metal fractionation in soils. Chemical Speciation and Bioavailability, 2014, 26, 21-30.	2.0	23
43	Distribution, geochemical fractionation and sorption of Cu and Pb in soils characteristic of Hungary. Central European Geology, 2014, 57, 265-285.	0.4	1
44	The erubáz volcanic soil of Hungary: Mineralogy and classification. Catena, 2013, 107, 46-56.	5.0	6
45	Examination of sample preparation methods for the laser grain size analysis of soils with high organic matter content. Agrokemia Es Talajtan, 2012, 61, 381-398.	0.2	7
46	Fractionation of iron in some soil types of Hungary as studied by sequential extraction. Agrokemia Es Talajtan, 2012, 61, 291-305.	0.2	0
47	Effect of pedogenic clay minerals on the sorption of copper in a Luvisol B horizon. Geoderma, 2011, 160, 509-516.	5.1	10
48	Comparison of EUROSEM, WEPP, and MEDRUSH model calculations with measured runoff and soil-loss data from rainfall simulations in Hungary. Journal of Plant Nutrition and Soil Science, 2009, 172, 789-797.	1.9	13
49	Spatial analysis of changes and anomalies of intense rainfalls in Hungary. Hungarian Geographical Bulletin, 0, , 241-253.	0.9	4