Farshid Sadeghi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1279463/publications.pdf

Version: 2024-02-01

71102 118850 5,891 197 41 62 citations h-index g-index papers 198 198 198 2158 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	A Review of Rolling Contact Fatigue. Journal of Tribology, 2009, 131, .	1.9	399
2	Cage Instabilities in Cylindrical Roller Bearings. Journal of Tribology, 2004, 126, 681-689.	1.9	123
3	Effects of plasticity on subsurface initiated spalling in rolling contact fatigue. International Journal of Fatigue, 2012, 36, 80-95.	5.7	116
4	Explicit finite element modeling of subsurface initiated spalling in rolling contacts. Tribology International, 2010, 43, 1693-1702.	5.9	108
5	Ultrasmooth Submicrometer Carbon Spheres as Lubricant Additives for Friction and Wear Reduction. ACS Applied Materials & Diterfaces, 2015, 7, 5514-5521.	8.0	105
6	Finite Element Modeling of Engagement of Rough and Grooved Wet Clutches. Journal of Tribology, 1996, 118, 137-146.	1.9	98
7	Effect of retained austenite – Compressive residual stresses on rolling contact fatigue life of carburized AISI 8620 steel. International Journal of Fatigue, 2015, 75, 135-144.	5 . 7	94
8	Rolling contact fatigue of case carburized steels. International Journal of Fatigue, 2017, 95, 264-281.	5.7	91
9	A Statistical Damage Mechanics Model for Subsurface Initiated Spalling in Rolling Contacts. Journal of Tribology, 2008, 130, .	1.9	86
10	Thermal EHL Analysis of Circular Contacts With Measured Surface Roughness. Journal of Tribology, 1996, 118, 473-482.	1.9	85
11	Analytical and Numerical Modeling of Engagement of Rough, Permeable, Grooved Wet Clutches. Journal of Tribology, 1997, 119, 143-148.	1.9	78
12	Thermal Elastohydrodynamic Lubrication of Rolling/Sliding Contacts. Journal of Tribology, 1990, 112, 189-195.	1.9	76
13	Effect of non-metallic inclusions on butterfly wing initiation, crack formation, and spall geometry in bearing steels. International Journal of Fatigue, 2015, 80, 203-215.	5 . 7	69
14	Analysis of EHL Circular Contact Start Up: Part I—Mixed Contact Model With Pressure and Film Thickness Results. Journal of Tribology, 2001, 123, 67-74.	1.9	68
15	A Discrete Element Approach for Modeling Cage Flexibility in Ball Bearing Dynamics Simulations. Journal of Tribology, 2009, 131, .	1.9	68
16	Comprehensive stability analysis of disc brake vibrations including gyroscopic, negative friction slope and mode-coupling mechanisms. Journal of Sound and Vibration, 2009, 324, 387-407.	3.9	67
17	A New Approach to Modeling Surface Defects in Bearing Dynamics Simulations. Journal of Tribology, 2008, 130, .	1.9	66
18	Dynamic instability of a thin circular plate with friction interface and its application to disc brake squeal. Journal of Sound and Vibration, 2008, 316, 164-179.	3.9	65

#	Article	IF	CITATIONS
19	Numerical modeling of sub-surface initiated spalling in rolling contacts. Tribology International, 2013, 59, 210-221.	5.9	64
20	A stress based damage mechanics model to simulate fretting wear of Hertzian line contact in partial slip. Wear, 2013, 307, 87-99.	3.1	63
21	A novel approach to model effects of surface roughness parameters on wear. Wear, 2015, 338-339, 73-94.	3.1	62
22	Three-Dimensional Temperature Distribution in EHD Lubrication: Part Iâ€"Circular Contact. Journal of Tribology, 1992, 114, 32-41.	1.9	61
23	A Voronoi Finite Element Study of Fatigue Life Scatter in Rolling Contacts. Journal of Tribology, 2009, 131, .	1.9	61
24	Groove Effects on Thrust Washer Lubrication. Journal of Tribology, 2001, 123, 295-304.	1.9	60
25	A Voronoi FE Fatigue Damage Model for Life Scatter in Rolling Contacts. Journal of Tribology, 2010, 132, .	1.9	60
26	A New Approach for Including Cage Flexibility in Dynamic Bearing Models by Using Combined Explicit Finite and Discrete Element Methods. Journal of Tribology, 2012, 134, .	1.9	59
27	MoS2 nanolayer coated carbon spheres as an oil additive for enhanced tribological performance. Carbon, 2016, 110, 367-377.	10.3	57
28	Non-Newtonian Thermal Elastohydrodynamic Lubrication. Journal of Tribology, 1991, 113, 390-396.	1.9	55
29	A discrete damage mechanics model for high cycle fatigue in polycrystalline materials subject to rolling contact. International Journal of Fatigue, 2009, 31, 346-360.	5.7	55
30	Microstructural Alterations in Bearing Steels under Rolling Contact Fatigue Part 1—Historical Overview. Tribology Transactions, 2013, 56, 349-358.	2.0	55
31	Contact characteristics of a rolling/sliding cylinder and a viscoelastic layer bonded to an elastic substrate. Wear, 1995, 184, 125-132.	3.1	52
32	Non-Newtonian Elastohydrodynamic Lubrication of Point Contact. Journal of Tribology, 1991, 113, 703-711.	1.9	49
33	Analytical formulation of mode-coupling instability in disc–pad coupled system. International Journal of Mechanical Sciences, 2009, 51, 52-63.	6.7	49
34	Spall initiation and propagation due to debris denting. Wear, 1996, 201, 106-116.	3.1	48
35	Nonlinear vibration analysis of fractional viscoelastic Euler–Bernoulli nanobeams based on the surface stress theory. Acta Mechanica Solida Sinica, 2017, 30, 416-424.	1.9	48
36	A new finite element fatigue modeling approach for life scatter in tensile steel specimens. International Journal of Fatigue, 2010, 32, 685-697.	5.7	45

#	Article	IF	CITATIONS
37	Modeling of fretting wear evolution in rough circular contacts in partial slip. International Journal of Mechanical Sciences, 2007, 49, 690-703.	6.7	43
38	An Approach for Modeling Material Grain Structure in Investigations of Hertzian Subsurface Stresses and Rolling Contact Fatigue. Journal of Tribology, 2010, 132, .	1.9	43
39	A Numerical and Experimental Investigation of Fretting Wear and a New Procedure for Fretting Wear Maps. Tribology Transactions, 2012, 55, 313-324.	2.0	42
40	A coupled finite element EHL and continuum damage mechanics model for rolling contact fatigue. Tribology International, 2017, 107, 173-183.	5.9	42
41	A Numerical Model for Life Scatter in Rolling Element Bearings. Journal of Tribology, 2008, 130, .	1.9	41
42	Oscillation pattern of stick–slip vibrations. International Journal of Non-Linear Mechanics, 2009, 44, 820-828.	2.6	41
43	Effects of surface defects on rolling contact fatigue of heavily loaded lubricated contacts. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2010, 224, 1061-1077.	1.8	41
44	Cohesive zone modeling of intergranular fatigue damage in rolling contacts. Tribology International, 2011, 44, 797-804.	5.9	41
45	An Improved Approach for 3D Rolling Contact Fatigue Simulations with Microstructure Topology. Tribology Transactions, 2013, 56, 385-399.	2.0	41
46	Time Dependent Line EHD Lubrication Using the Multigrid/Multilevel Technique. Journal of Tribology, 1992, 114, 68-74.	1.9	40
47	Three-Dimensional Temperature Distribution in EHD Lubrication: Part II—Point Contact and Numerical Formulation. Journal of Tribology, 1993, 115, 36-45.	1.9	40
48	Effects of crystal elasticity on rolling contact fatigue. International Journal of Fatigue, 2014, 61, 67-75.	5.7	39
49	An experimental study and fatigue damage model for fretting fatigue. Tribology International, 2014, 79, 183-196.	5.9	39
50	A 3D finite element modelling of crystalline anisotropy in rolling contact fatigue. International Journal of Fatigue, 2018, 106, 92-102.	5.7	39
51	A continuum damage mechanics finite element model for investigating effects of surface roughness on rolling contact fatigue. International Journal of Fatigue, 2021, 143, 105986.	5.7	39
52	Analysis of EHL Circular Contact Shut Down. Journal of Tribology, 2003, 125, 76-90.	1.9	38
53	Experimental and Numerical Investigation of Torsion Fatigue of Bearing Steel. Journal of Tribology, 2013, 135, .	1.9	38
54	Debris Denting Effects on Elastohydrodynamic Lubricated Contacts. Journal of Tribology, 1997, 119, 579-587.	1.9	37

#	Article	IF	Citations
55	A Simplified Approach to Modeling Thermal Effects in Wet Clutch Engagement: Analytical and Experimental Comparison. Journal of Tribology, 2000, 122, 110-118.	1.9	37
56	High temperature dynamic viscosity sensor for engine oil applications. Sensors and Actuators A: Physical, 2012, 173, 102-107.	4.1	36
57	Torque Transmission Characteristics of Automatic Transmission Wet Clutches: Experimental Results and Numerical Comparison. Tribology Transactions, 1997, 40, 539-548.	2.0	35
58	Rolling contact fatigue in refurbished case carburized bearings. Tribology International, 2017, 115, 348-364.	5.9	35
59	In-situ friction and fretting wear measurements of Inconel 617 at elevated temperatures. Wear, 2018, 410-411, 110-118.	3.1	35
60	Surface defects effects on bearing dynamics. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2010, 224, 25-35.	1.8	34
61	Dent Initiated Spall Formation in EHL Rolling/Sliding Contact. Journal of Tribology, 1998, 120, 453-462.	1.9	33
62	A 3D Finite Element Study of Fatigue Life Dispersion in Rolling Line Contacts. Journal of Tribology, 2011, 133, .	1.9	33
63	A CFD investigation of lubricant flow in deep groove ball bearings. Tribology International, 2021, 154, 106735.	5.9	33
64	Third body modeling in fretting using the combined finite-discrete element method. International Journal of Solids and Structures, 2014, 51, 1375-1389.	2.7	32
65	Numerical Modeling of Mixed Lubrication and Flash Temperature in EHL Elliptical Contacts. Journal of Tribology, 2008, 130, .	1.9	31
66	A Finite Element Model for Spherical Debris Denting in Heavily Loaded Contacts. Journal of Tribology, 2004, 126, 71-80.	1.9	30
67	Material Inclusion Factors for Lundberg-Palmgren–Based RCF Life Equations. Tribology Transactions, 2011, 54, 457-469.	2.0	30
68	Flow Visualization in a Pocketed Thrust Washer. Tribology Transactions, 2012, 55, 571-581.	2.0	30
69	Three-Dimensional Finite Element Elastic–Plastic Model for Subsurface Initiated Spalling in Rolling Contacts. Journal of Tribology, 2014, 136, .	1.9	30
70	A continuum damage mechanics framework for modeling the effect of crystalline anisotropy on rolling contact fatigue. Tribology International, 2019, 140, 105845.	5.9	30
71	A microstructure based approach to model effects of surface roughness on tensile fatigue. International Journal of Fatigue, 2019, 129, 105229.	5.7	30
72	Thermal Effects in Rolling/Sliding Contacts: Part 2â€"Analysis of Thermal Effects in Fluid Film. Journal of Tribology, 1987, 109, 512-517.	1.9	29

#	Article	IF	CITATIONS
73	Residual Stresses Due to Debris Effects in EHL Contacts. Tribology Transactions, 1997, 40, 613-620.	2.0	29
74	On the Effect of Isotropic Hardening on the Coefficient of Restitution for Single or Repeated Impacts Using a Semi-Analytical Method. Tribology Transactions, 2011, 54, 714-722.	2.0	29
75	Rough surface and damage mechanics wear modeling using the combined finite-discrete element method. Wear, 2013, 305, 312-321.	3.1	29
76	An elastic–plastic investigation of third body effects on fretting contact in partial slip. International Journal of Solids and Structures, 2016, 81, 95-109.	2.7	29
77	Fretting fatigue of rough surfaces. Wear, 2008, 264, 719-730.	3.1	28
78	Wave pattern motion and stick–slip limit cycle oscillation of a disc brake. Journal of Sound and Vibration, 2009, 325, 552-564.	3.9	28
79	Fretting Wear Modeling of Coated and Uncoated Surfaces Using the Combined Finite-Discrete Element Method. Journal of Tribology, $2011,133,.$	1.9	28
80	Combined Explicit Finite and Discrete Element Methods for Rotor Bearing Dynamic Modeling. Tribology Transactions, 2015, 58, 300-315.	2.0	28
81	A Review of Microstructural Alterations around Nonmetallic Inclusions in Bearing Steel during Rolling Contact Fatigue. Tribology Transactions, 2016, 59, 1142-1156.	2.0	28
82	Novel tertiary dry solid lubricant on steel surfaces reduces significant friction and wear under high load conditions. Carbon, 2017, 123, 7-17.	10.3	28
83	The Effects of a Stationary Surface Pocket on EHL Line Contact Start-Up. Journal of Tribology, 2004, 126, 672-680.	1.9	27
84	Upcycling of Spent Lithium Cobalt Oxide Cathodes from Discarded Lithium-Ion Batteries as Solid Lubricant Additive. Environmental Science & Environment	10.0	27
85	Compressible Elastohydrodynamic Lubrication of Rough Surfaces. Journal of Tribology, 1989, 111, 56-62.	1.9	26
86	Analysis of EHL Circular Contact Start Up: Part IIâ€"Surface Temperature Rise Model and Results. Journal of Tribology, 2001, 123, 75-82.	1.9	26
87	Influence of Plasticity-Induced Residual Stresses on Rolling Contact Fatigue. Tribology Transactions, 2012, 55, 422-437.	2.0	26
88	A Coupled Multibody Finite Element Model for Investigating Effects of Surface Defects on Rolling Contact Fatigue. Journal of Tribology, 2019, 141, .	1.9	26
89	Experimental and numerical investigation of fatigue of thin tensile specimen. International Journal of Fatigue, 2012, 44, 116-130.	5.7	25
90	Threeâ€dimensional modelling of intergranular fatigue failure of fine grain polycrystalline metallic MEMS devices. Fatigue and Fracture of Engineering Materials and Structures, 2012, 35, 1007-1021.	3.4	25

#	Article	IF	Citations
91	A 3D efficient finite element model to simulate rolling contact fatigue under high loading conditions. Tribology International, 2018, 126, 258-269.	5.9	25
92	Thermal Effects in Thrust Washer Lubrication. Journal of Tribology, 2002, 124, 166-177.	1.9	24
93	Early-Warning Wireless Telemeter for Harsh-Environment Bearings. , 2007, , .		24
94	Experimental and Analytical Investigation of High Speed Turbocharger Ball Bearings. Journal of Engineering for Gas Turbines and Power, 2011, 133, .	1.1	24
95	A 3D numerical and experimental investigation of microstructural alterations around non-metallic inclusions in bearing steel. International Journal of Fatigue, 2016, 88, 29-41.	5.7	24
96	A New Approach for Fatigue Damage Modeling of Subsurface-Initiated Spalling in Large Rolling Contacts. Journal of Tribology, 2017, 139, .	1.9	24
97	Thermal Elastohydrodynamic Lubrication of Rough Surfaces. Journal of Tribology, 1990, 112, 341-346.	1.9	22
98	Stability of Sliding in a System Excited by a Rough Moving Surface. Journal of Tribology, 1997, 119, 672-680.	1.9	22
99	A finite element model for rolling contact fatigue of refurbished bearings. Tribology International, 2015, 85, 1-9.	5.9	22
100	A Finite Element Analysis of Surface Pocket Effects in Hertzian Line Contact. Journal of Tribology, 2000, 122, 47-54.	1.9	21
101	A novel modular fretting wear test rig. Wear, 2012, 274-275, 313-325.	3.1	21
102	Internal Stresses in Contact of a Rough Body and a Viscoelastic Layered Semi-Infinite Plane. Journal of Tribology, 1996, 118, 131-136.	1.9	20
103	Fretting of WC/a-C:H and Cr ₂ N Coatings Under Grease-Lubricated and Unlubricated Conditions. Tribology Transactions, 2009, 53, 145-153.	2.0	20
104	Whirl and Friction Characteristics of High Speed Floating Ring and Ball Bearing Turbochargers. Journal of Tribology, 2013, 135, .	1.9	20
105	Thermal Effects in Rolling/Sliding Contacts: Part 3—Approximate Method for Prediction of Mid-Film Temperature and Sliding Traction. Journal of Tribology, 1987, 109, 519-523.	1.9	19
106	Effect of Temperature on Thermoelastic Instability in Thin Disks. Journal of Tribology, 2002, 124, 429-437.	1.9	19
107	Evaluation of Stresses Around Inclusions in Hertzian Contacts Using the Discrete Element Method. Journal of Tribology, 2007, 129, 283-291.	1.9	19
108	Statistical numerical modelling of sub-surface initiated spalling in bearing contacts. Proceedings of the Institution of Mechanical Engineers, Part J. Journal of Engineering Tribology, 2009, 223, 849-858.	1.8	19

#	Article	IF	Citations
109	A fracture mechanics approach to simulate sub-surface initiated fretting wear. International Journal of Solids and Structures, 2015, 58, 335-352.	2.7	19
110	A Novel Test Rig for the Investigation of Ball Bearing Cage Friction. Tribology Transactions, 2021, 64, 943-955.	2.0	19
111	Numerical Analysis of Temperature Distribution at the Lip Seal-Shaft Interface. Journal of Tribology, 1997, 119, 273-278.	1.9	18
112	Bearing cage temperature measurement using radio telemetry. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2001, 215, 471-481.	1.8	18
113	Microstructural Alterations in Bearing Steels under Rolling Contact Fatigue: Part 2—Diffusion-Based Modeling Approach. Tribology Transactions, 2014, 57, 66-76.	2.0	18
114	Finite element modeling of fretting wear in anisotropic composite coatings: Application to HVOF Cr3C2–NiCr coating. Tribology International, 2021, 155, 106765.	5.9	18
115	Experimental and analytical investigation of fluid drag losses in rolling element bearings. Tribology International, 2021, 161, 107106.	5.9	18
116	Effects of compressive stresses on torsional fatigue. Tribology International, 2014, 77, 196-210.	5.9	17
117	An approach for predicting failure mechanism in rough surface rolling contact fatigue. Tribology International, 2021, 158, 106923.	5.9	17
118	A Comparison of the Fluid Models Effect on the Internal Stresses of Rough Surfaces. Journal of Tribology, 1991, 113, 142-149.	1.9	16
119	EHL Modeling for Nonhomogeneous Materials: The Effect of Material Inclusions. Journal of Tribology, 2007, 129, 256-273.	1.9	16
120	Estimating Life Scatter in Fretting Fatigue Crack Initiation. Tribology Transactions, 2013, 56, 531-535.	2.0	16
121	A Damage Mechanics Approach to Simulate Butterfly Wing Formation Around Nonmetallic Inclusions. Journal of Tribology, 2015, 137, .	1.9	16
122	Experimental and Analytical Investigation of Floating Valve Plate Motion in an Axial Piston Pump. Tribology Transactions, 2017, 60, 537-547.	2.0	16
123	Binder mediated enhanced surface adhesion of cured dry solid lubricant on bearing steel for significant friction and wear reduction under high contact pressure. Carbon, 2019, 146, 588-596.	10.3	16
124	Residual stress formation and stability in bearing steels due to fatigue induced retained austenite transformation. International Journal of Fatigue, 2020, 136, 105610.	5.7	16
125	Fatigue Life Reduction in Mixed Lubricated Elliptical Contacts. Tribology Letters, 2007, 27, 197-209.	2.6	15
126	Fluid–Structure Interaction Modeling of Elastohydrodynamically Lubricated Line Contacts. Journal of Tribology, 2021, 143, .	1.9	15

#	Article	IF	CITATIONS
127	The effects of lubricant starvation on ball bearing cage pocket friction. Tribology International, 2022, 173, 107630.	5.9	15
128	Elastoplastohydrodynamic Lubrication with Dent Effects. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 1996, 210, 233-245.	1.8	14
129	Gaseous Cavitation and Wear in Lubricated Fretting Contacts. Tribology Transactions, 2008, 51, 351-360.	2.0	14
130	Predicting Material Performance in Rolling Contact Fatigue via Torsional Fatigue. Tribology Transactions, 2019, 62, 614-625.	2.0	14
131	Debris Effects on EHL Contact. Journal of Tribology, 2000, 122, 711-720.	1.9	13
132	A discrete element approach to evaluate stresses due to line loading on an elastic half-space. Computational Mechanics, 2007, 40, 513.	4.0	13
133	An inherently-robust 300°C MEMS temperature sensor for wireless health monitoring of ball and rolling element bearings. , 2009, , .		13
134	Investigation of Fluid Flow Out of a Microcavity Using μ PIV. Tribology Transactions, 2009, 52, 817-832.	2.0	13
135	Experimental and analytical investigation of effects of refurbishing on rolling contact fatigue. Wear, 2017, 392-393, 190-201.	3.1	13
136	EHL modeling of nonhomogeneous materials: The effects of polycrystalline anisotropy on RCF. Tribology International, 2017, 112, 137-146.	5.9	13
137	Effect of Residual Stresses on Microstructural Evolution Due to Rolling Contact Fatigue. Journal of Tribology, 2018, 140, .	1.9	13
138	Formulas Used in Thermal Elastohydrodynamic Lubrication. Tribology Transactions, 1991, 34, 588-596.	2.0	12
139	In Situ Tribocomponent Temperature Measurement Using a Radio Telemeter. Tribology Transactions, 1997, 40, 514-520.	2.0	12
140	Investigation of Turbocharger Dynamics Using a Combined Explicit Finite and Discrete Element Method Rotor–Cartridge Model. Journal of Tribology, 2017, 139, .	1.9	12
141	Dynamic Modeling of Floating Valve Plate Motion in an Axial Piston Pump. Tribology Transactions, 2018, 61, 683-693.	2.0	12
142	A Novel Modeling Approach to Simulate Rolling Contact Fatigue and Three-Dimensional Spalls. Journal of Tribology, 2018, 140, .	1.9	12
143	Computer-aided design/engineering of bearing systems using the Dempster-Shafer theory. Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, 1995, 9, 1-11.	1.1	11
144	A Phenomenological Discrete Brittle Damage-Mechanics Model for Fatigue of MEMS Devices With Application to LIGA Ni. Journal of Microelectromechanical Systems, 2009, 18, 119-128.	2.5	11

#	Article	IF	Citations
145	Experimental Investigation of Cage Dynamics and Ball-Cage Contact Forces in an Angular Contact Ball Bearing. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2022, 236, 2522-2534.	1.8	11
146	The Effects of Cage Flexibility on Ball-to-Cage Pocket Contact Forces and Cage Instability in Deep Groove Ball Bearings. , 2006, , .		10
147	Experimental Investigation of Lubricant Extraction from a Micropocket. Tribology Transactions, 2011, 54, 404-416.	2.0	10
148	A Combined EFEM–Discrete Element Method Dynamic Model of Rotor–Bearing–Housing System. Journal of Tribology, 2017, 139, .	1.9	10
149	An Efficient Cavitation Model for Compressible Fluid Film Bearings. Tribology Transactions, 2021, 64, 434-453.	2.0	10
150	A Novel Three-Dimensional Finite Element Model to Simulate Third Body Effects on Fretting Wear of Hertzian Point Contact in Partial Slip. Journal of Tribology, 2021, 143, .	1.9	10
151	An Explicit Finite-Element Model to Investigate the Effects of Elastomeric Bushing on Bearing Dynamics. Journal of Tribology, 2016, 138, .	1.9	9
152	Surface modification effects on lubricant temperature and floating valve plate motion in an axial piston pump. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2020, 234, 3-17.	1.8	9
153	A Strongly Coupled Finite Difference Method–Finite Element Method Model for Two-Dimensional Elastohydrodynamically Lubricated Contact. Journal of Tribology, 2020, 142, .	1.9	9
154	A CFD-FEM based partitioned fluid structure interaction model to investigate surface cracks in elastohydrodynamic lubricated line contacts. Tribology International, 2022, 171, 107532.	5.9	9
155	Vibration in Grease Lubricated Bearing Systems. Tribology Transactions, 2000, 43, 403-410.	2.0	8
156	Highly Reliable MEMS Temperature Sensors for 275 \$^{ circ}hbox{C}\$ Applicationsâ€"Part 2: Creep and Cycling Performance. Journal of Microelectromechanical Systems, 2013, 22, 236-243.	2.5	8
157	Hydrodynamic Pressure Generation in a Pocketed Thrust Washer. Tribology Transactions, 2013, 56, 652-662.	2.0	8
158	Effect of Housing Support on Bearing Dynamics. Journal of Tribology, 2016, 138, .	1.9	8
159	An anisotropic damage model for tensile fatigue. Fatigue and Fracture of Engineering Materials and Structures, 2019, 42, 129-142.	3.4	8
160	A coupled damage model and a semi-analytical contact solver to simulate butterfly wing formation around nonmetallic inclusions. International Journal of Fatigue, 2019, 127, 445-460.	5.7	8
161	Using µPIV to Investigate Fluid Flow in a Pocketed Thrust Bearing. Tribology Transactions, 2019, 62, 350-361.	2.0	8
162	Effects of Grain Refinement on Rolling Contact Fatigue in Bearing Contacts. Journal of Tribology, 2021, 143, .	1.9	8

#	Article	IF	Citations
163	Rolling contact fatigue of coupled EHL and anisotropic polycrystalline materials. Tribology International, 2022, 169, 107479.	5.9	8
164	Effect of spatial hardness distribution in rolling contact fatigue performance of bearing contacts. Tribology International, 2022, 171, 107550.	5.9	8
165	Performance Characteristics of Perfluoroalkylpolyether Synthetic Lubricants. Tribology Transactions, 1996, 39, 849-854.	2.0	7
166	Experimental Investigation of the Correlation Between Adhesion and Friction Forces. Tribology Letters, 2016, 62, 1.	2.6	7
167	Experimental and Analytical Investigation of Turbocharger Whirl and Dynamics. Tribology Transactions, 2021, 64, 239-252.	2.0	7
168	The Normal Approach and Stick-Slip Phenomena at the Interface of Two Rough Bodies. Journal of Tribology, 1993, 115, 445-452.	1.9	6
169	Effects of a Single Bump or Dent in Time Dependent Thermal Line EHD Lubrication. Journal of Tribology, 1994, 116, 9-20.	1.9	6
170	Radius of Curvature and Entraining Velocity of Cam Follower Mechanisms. Tribology Transactions, 1996, 39, 899-907.	2.0	6
171	Elastohydrodynamic lubrication. , 2010, , 171-226e.		6
172	A novel approach for modeling retained austenite transformations during rolling contact fatigue. Fatigue and Fracture of Engineering Materials and Structures, 2018, 41, 831-843.	3.4	6
173	A Three-Dimensional Finite Element Damage Mechanics Model to Simulate Fretting Wear of Hertzian Line and Circular Contacts in Partial Slip Regime. Journal of Tribology, 2022, 144, .	1.9	6
174	Retained austenite stability on rolling contact fatigue performance of 8620 case arburized steel. Fatigue and Fracture of Engineering Materials and Structures, 2022, 45, 55-68.	3.4	6
175	Effect of surface roughness on normal contact compression response. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2006, 220, 65-77.	1.8	5
176	Temperature Distribution in Pocketed Thrust Washers. Tribology Transactions, 2015, 58, 31-43.	2.0	5
177	Experimental and numerical investigation of torsion fatigue of a nickel-based alloy at elevated temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 751, 263-270.	5.6	5
178	Experimental investigation of fretting wear of coated spring clip and inlet ring in land-based gas turbines at elevated temperature. Wear, 2020, 446-447, 203200.	3.1	5
179	Analytical Investigation of Roller Skew and Tilt in a Spherical Roller Bearing. Journal of Tribology, 2022, 144, .	1.9	5
180	Internal Stresses in Elastohydrodynamic Lubrication of Rolling/Sliding Contacts. Journal of Tribology, 1989, 111, 180-187.	1.9	4

#	Article	IF	CITATIONS
181	Bearing cage telemeter for the detection of shaft imbalance in rotating systems. , 2010, , .		4
182	A Wireless Sensor Telemeter for in situ Cage Vibration Measurement and Corroboration with Analytical Results. Tribology Transactions, 2018, 61, 1013-1026.	2.0	4
183	A method to model crystalline anisotropy in contact using semi-analytical method. Tribology International, 2020, 152, 106429.	5.9	4
184	A crystal plasticity and cohesive element model for rolling contact fatigue of bearing steels. Tribology International, 2022, 173, 107607.	5.9	4
185	Thermoelastic Effects in Lubricated Rolling/Sliding Line Contacts. Journal of Tribology, 1991, 113, 174-181.	1.9	3
186	Performance Characteristics of Jet Fuel in Heavily Loaded Contacts. Tribology Transactions, 2007, 50, 154-164.	2.0	3
187	Adhesion and Friction Force Measurements Using an Optical Micro-Apparatus. Tribology Letters, 2016, 64, 1.	2.6	3
188	Experimental Investigation of the Dynamic Loads in a Ball Bearing Turbocharger. Journal of Tribology, 2019, 141, .	1.9	3
189	Closure to "Discussion of â€~A Comparison of the Fluid Models Effect on the Internal Stresses of Rough Surfaces'―(1991, ASME J. Tribol., 113, p. 149). Journal of Tribology, 1991, 113, 149-149.	1.9	1
190	Closure to "Discussion of â€~Non-Newtonian Thermal Elastohydrodynamic Lubrication'―(1991, ASME J.)) Tj.ETQq(0 0 0 rgBT /Ov
191	A 3D Finite Element Model for Investigating Effects of Refurbishing on Rolling Contact Fatigue. Tribology Transactions, 2020, 63, 251-264.	2.0	1
192	Closure to "Discussion of â€~Thermal Effects in Rolling/Sliding Contacts: Part 3—Approximate Method for Prediction of Mid-Film Temperature and Sliding Traction'―(1987, ASME J. Tribol., 109, p. 523). Journal of Tribology, 1987, 109, 523-524.	1.9	1
193	The Effect of Surface Layer with Bleeding Properties in Rolling/Sliding Contact. Tribology Transactions, 2000, 43, 123-129.	2.0	0
194	Remotely powered wireless strain telemeter. , 2011, , .		0
195	Closure to "Discussion of â€~A New Approach for Fatigue Damage Modeling of Subsurface-Initiated Spalling in Large Rolling Contacts'―(2016, ASME J. Tribol., 139(3), p. 035501). Journal of Tribology, 2017, 139, .	1.9	0
196	In Memoriam Of Professor Duncan Dowson. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2021, 235, 2566-2566.	1.8	0
197	Closure to "Discussion of â€~Thermal Effects in Rolling/Sliding Contacts: Part 2—Analysis of Thermal Effects in Fluid Film'―(1987, ASME J. Tribol., 109, p. 518). Journal of Tribology, 1987, 109, 518-518.	1.9	0