Katharina E Fabricius

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1279053/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CLASSIFICATION AND REGRESSION TREES: A POWERFUL YET SIMPLE TECHNIQUE FOR ECOLOGICAL DATA ANALYSIS. Ecology, 2000, 81, 3178-3192.	3.2	2,501
2	Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Marine Pollution Bulletin, 2005, 50, 125-146.	5.0	1,736
3	The 27–year decline of coral cover on the Great Barrier Reef and its causes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17995-17999.	7.1	1,411
4	Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nature Climate Change, 2011, 1, 165-169.	18.8	856
5	Declining Coral Calcification on the Great Barrier Reef. Science, 2009, 323, 116-119.	12.6	567
6	Shifting roles of heterotrophy and autotrophy in coral energetics under varying turbidity. Journal of Experimental Marine Biology and Ecology, 2000, 252, 221-253.	1.5	540
7	RECOGNITION AND SELECTION OF SETTLEMENT SUBSTRATA DETERMINE POST-SETTLEMENT SURVIVAL IN CORALS. Ecology, 2004, 85, 3428-3437.	3.2	404
8	Changes in algal, coral and fish assemblages along water quality gradients on the inshore Great Barrier Reef. Marine Pollution Bulletin, 2005, 51, 384-398.	5.0	380
9	Water quality as a regional driver of coral biodiversity and macroalgae on the Great Barrier Reef. Ecological Applications, 2010, 20, 840-850.	3.8	359
10	Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change—A review. Global Change Biology, 2018, 24, 2239-2261.	9.5	285
11	Three lines of evidence to link outbreaks of the crown-of-thorns seastar Acanthaster planci to the release of larval food limitation. Coral Reefs, 2010, 29, 593-605.	2.2	279
12	Natural volcanic CO2 seeps reveal future trajectories for host–microbial associations in corals and sponges. ISME Journal, 2015, 9, 894-908.	9.8	268
13	Are increased nutrient inputs responsible for more outbreaks of crown-of-thorns starfish? An appraisal of the evidence. Marine Pollution Bulletin, 2005, 51, 266-278.	5.0	246
14	Ocean acidification through the lens of ecological theory. Ecology, 2015, 96, 3-15.	3.2	237
15	Declining coral calcification in massive <i>Porites</i> in two nearshore regions of the northern Great Barrier Reef. Global Change Biology, 2008, 14, 529-538.	9.5	222
16	Identity and diversity of coral endosymbionts (zooxanthellae) from three Palauan reefs with contrasting bleaching, temperature and shading histories. Molecular Ecology, 2004, 13, 2445-2458.	3.9	221
17	The other ocean acidification problem: CO ₂ as a resource among competitors for ecosystem dominance. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120442.	4.0	199
18	Environmental factors associated with the spatial distribution of crustose coralline algae on the Great Barrier Reef. Coral Reefs, 2001, 19, 303-309.	2.2	184

#	Article	IF	CITATIONS
19	Mechanisms of damage to corals exposed to sedimentation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1558-67.	7.1	184
20	Ecological effects of ocean acidification and habitat complexity on reef-associated macroinvertebrate communities. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132479.	2.6	178
21	Photophysiological stress in scleractinian corals in response to short-term sedimentation. Journal of Experimental Marine Biology and Ecology, 2003, 287, 57-78.	1.5	175
22	Diversity of algal endosymbionts (zooxanthellae) in octocorals: the roles of geography and host relationships. Molecular Ecology, 2005, 14, 2403-2417.	3.9	168
23	Sedimentation stress in a scleractinian coral exposed to terrestrial and marine sediments with contrasting physical, organic and geochemical properties. Journal of Experimental Marine Biology and Ecology, 2006, 336, 18-32.	1.5	167
24	Ocean acidification can mediate biodiversity shifts by changing biogenic habitat. Nature Climate Change, 2017, 7, 81-85.	18.8	164
25	Rapid Smothering of Coral Reef Organisms by Muddy Marine Snow. Estuarine, Coastal and Shelf Science, 2000, 50, 115-120.	2.1	155
26	Bioindicators of changes in water quality on coral reefs: review and recommendations for monitoring programmes. Coral Reefs, 2009, 28, 589-606.	2.2	153
27	Behavioural impairment in reef fishes caused by ocean acidification at CO2 seeps. Nature Climate Change, 2014, 4, 487-492.	18.8	152
28	Effects of the herbicide diuron on the early life history stages of coral. Marine Pollution Bulletin, 2005, 51, 370-383.	5.0	150
29	Disturbance gradients on inshore and offshore coral reefs caused by a severe tropical cyclone. Limnology and Oceanography, 2008, 53, 690-704.	3.1	149
30	Phytoplankton distribution and grazing near coral reefs. Limnology and Oceanography, 1998, 43, 551-563.	3.1	139
31	The effects of river run-off on water clarity across the central Great Barrier Reef. Marine Pollution Bulletin, 2014, 84, 191-200.	5.0	135
32	Species richness and community structure of reef-building corals on the nearshore Great Barrier Reef. Coral Reefs, 2006, 25, 329-340.	2.2	134
33	Monitoring pesticides in the Great Barrier Reef. Marine Pollution Bulletin, 2010, 60, 113-122.	5.0	134
34	Flowâ€dependent herbivory and growth in zooxanthellaeâ€free soft corals. Limnology and Oceanography, 1995, 40, 1290-1301.	3.1	133
35	IDENTIFYING ECOLOGICAL CHANGE AND ITS CAUSES: A CASE STUDY ON CORAL REEFS. , 2004, 14, 1448-1465.		127
36	Temperate and tropical brown macroalgae thrive, despite decalcification, along natural <scp>CO</scp> ₂ gradients. Global Change Biology, 2012, 18, 2792-2803.	9.5	123

#	Article	IF	CITATIONS
37	Skeletal isotope microprofiles of growth perturbations in Porites corals during the 1997?1998 mass bleaching event. Coral Reefs, 2003, 22, 357-369.	2.2	119
38	Effects of transparent exopolymer particles and muddy terrigenous sediments on the survival of hard coral recruits. Estuarine, Coastal and Shelf Science, 2003, 57, 613-621.	2.1	114
39	Gains and losses of coral skeletal porosity changes with ocean acidification acclimation. Nature Communications, 2015, 6, 7785.	12.8	106
40	Future seagrass beds: Can increased productivity lead to increased carbon storage?. Marine Pollution Bulletin, 2013, 73, 463-469.	5.0	103
41	Gradients in water column nutrients, sediment parameters, irradiance and coral reef development in the Whitsunday Region, central Great Barrier Reef. Estuarine, Coastal and Shelf Science, 2007, 74, 458-470.	2.1	102
42	Future makers or future takers? A scenario analysis of climate change and the Great Barrier Reef. Global Environmental Change, 2011, 21, 876-893.	7.8	102
43	Widespread mixotrophy in reef-inhabiting soft corals:the influence of depth, and colony expansion and contraction on photosynthesis. Marine Ecology - Progress Series, 1995, 125, 195-204.	1.9	101
44	Importance of wave-induced bed liquefaction in the fine sediment budget of Cleveland Bay, Great Barrier Reef. Estuarine, Coastal and Shelf Science, 2010, 89, 154-162.	2.1	100
45	A bioindicator system for water quality on inshore coral reefs of the Great Barrier Reef. Marine Pollution Bulletin, 2012, 65, 320-332.	5.0	97
46	Intra-annual variation in turbidity in response to terrestrial runoff on near-shore coral reefs of the Great Barrier Reef. Estuarine, Coastal and Shelf Science, 2013, 116, 57-65.	2.1	93
47	Changes in water clarity in response to river discharges on the Great Barrier Reef continental shelf: 2002–2013. Estuarine, Coastal and Shelf Science, 2016, 173, A1-A15.	2.1	92
48	High risk of extinction of benthic foraminifera in this century due to ocean acidification. Scientific Reports, 2013, 3, .	3.3	87
49	Effects of suspended sediments, dissolved inorganic nutrients and salinity on fertilisation and embryo development in the coral Acropora millepora (Ehrenberg, 1834). Coral Reefs, 2008, 27, 837-850.	2.2	86
50	Diversity of Scleractinia and Octocorallia in the mesophotic zone of the Great Barrier Reef, Australia. Coral Reefs, 2012, 31, 179-189.	2.2	86
51	Herbivory in Asymbiotic Soft Corals. Science, 1995, 268, 90-92.	12.6	85
52	Fine sediment budget on an inner-shelf coral-fringed island, Great Barrier Reef of Australia. Estuarine, Coastal and Shelf Science, 2005, 65, 153-158.	2.1	85
53	Synergistic effects of diuron and sedimentation on photosynthesis and survival of crustose coralline algae. Marine Pollution Bulletin, 2005, 51, 415-427.	5.0	85
54	Factors Determining the Resilience of Coral Reefs to Eutrophication: A Review and Conceptual Model. , 2011, , 493-505.		83

#	Article	lF	CITATIONS
55	Classification and Regression Trees: A Powerful Yet Simple Technique for Ecological Data Analysis. Ecology, 2000, 81, 3178.	3.2	78
56	Effects of irradiance, flow, and colony pigmentation on the temperature microenvironment around corals: Implications for coral bleaching?. Limnology and Oceanography, 2006, 51, 30-37.	3.1	76
57	The economic value of ecosystem services in the Great Barrier Reef: our state of knowledge. Annals of the New York Academy of Sciences, 2011, 1219, 113-133.	3.8	75
58	Drivers of recovery and reassembly of coral reef communities. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182908.	2.6	70
59	Depletion of suspended particulate matter over coastal reef communities dominated by zooxanthellate soft corals. Marine Ecology - Progress Series, 2000, 196, 157-167.	1.9	70
60	Biomineralization control related to population density under ocean acidification. Nature Climate Change, 2014, 4, 593-597.	18.8	68
61	In Situ Applications of a New Diver-Operated Motorized Microsensor Profiler. Environmental Science & Technology, 2007, 41, 6210-6215.	10.0	67
62	Wet season fine sediment dynamics on the inner shelf of the Great Barrier Reef. Estuarine, Coastal and Shelf Science, 2008, 77, 755-762.	2.1	67
63	Enhanced macroboring and depressed calcification drive net dissolution at high-CO ₂ coral reefs. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161742.	2.6	65
64	Changes in microbial communities in coastal sediments along natural <scp><scp>CO₂</scp> gradients at a volcanic vent in <scp>P</scp>apua <scp>N</scp>ew <scp>G</scp>uinea. Environmental Microbiology, 2015, 17, 3678-3691.</scp>	3.8	64
65	Changes in octocoral communities and benthic cover along a water quality gradient in the reefs of Hong Kong. Marine Pollution Bulletin, 2006, 52, 22-33.	5.0	63
66	Productivity gains do not compensate for reduced calcification under nearâ€future ocean acidification in the photosynthetic benthic foraminifer species <i>Marginopora vertebralis</i> . Global Change Biology, 2012, 18, 2781-2791.	9.5	62
67	Scleractinian walls of mouths: Predation on coral larvae by corals. Coral Reefs, 2004, 23, 245.	2.2	60
68	PHOTOSYNTHETIC SYMBIONTS AND ENERGY SUPPLY DETERMINE OCTOCORAL BIODIVERSITY IN CORAL REEFS. Ecology, 2008, 89, 3163-3173.	3.2	59
69	Slow population turnover in the soft coral genera Sinularia and Sarcophyton on mid- and outer-shelf reefs of the Great Barrier Reef. Marine Ecology - Progress Series, 1995, 126, 145-152.	1.9	59
70	River discharge reduces reef coral diversity in Palau. Marine Pollution Bulletin, 2011, 62, 824-831.	5.0	58
71	A diver-operated hyperspectral imaging and topographic surveying system for automated mapping of benthic habitats. Scientific Reports, 2017, 7, 7122.	3.3	56
72	Soft coral abundance on the central Great Barrier Reef: effects of Acanthaster planci, space availability, and aspects of the physical environment. Coral Reefs, 1997, 16, 159-167.	2.2	53

#	Article	IF	CITATIONS
73	Does Trophic Status Enhance or Reduce the Thermal Tolerance of Scleractinian Corals? A Review, Experiment and Conceptual Framework. PLoS ONE, 2013, 8, e54399.	2.5	52
74	Cumulative Effects of Nutrient Enrichment and Elevated Temperature Compromise the Early Life History Stages of the Coral Acropora tenuis. PLoS ONE, 2016, 11, e0161616.	2.5	52
75	Cumulative effects of suspended sediments, organic nutrients and temperature stress on early life history stages of the coral Acropora tenuis. Scientific Reports, 2017, 7, 44101.	3.3	52
76	Symbiont specificity and bleaching susceptibility among soft corals in the 1998 Great Barrier Reef mass coral bleaching event. Marine Biology, 2008, 154, 795-804.	1.5	50
77	Ocean acidification affects productivity but not the severity of thermal bleaching in some tropical corals. ICES Journal of Marine Science, 2016, 73, 715-726.	2.5	50
78	The O2, pH and Ca2+ Microenvironment of Benthic Foraminifera in a High CO2 World. PLoS ONE, 2012, 7, e50010.	2.5	49
79	Temporal dynamics in coral bioindicators for water quality on coastal coral reefs of the Great Barrier Reef. Marine and Freshwater Research, 2008, 59, 703.	1.3	47
80	<i>Echinometra</i> sea urchins acclimatized to elevated <scp><i>p</i>CO</scp> ₂ at volcanic vents outperform those under presentâ€day <scp><i>p</i>CO</scp> ₂ conditions. Global Change Biology, 2016, 22, 2451-2461.	9.5	47
81	Setting ecologically relevant targets for river pollutant loads to meet marine water quality requirements for the Great Barrier Reef, Australia: A preliminary methodology and analysis. Ocean and Coastal Management, 2017, 143, 136-147.	4.4	47
82	Predicting water toxicity: Pairing passive sampling with bioassays on the Great Barrier Reef. Aquatic Toxicology, 2009, 95, 108-116.	4.0	46
83	Gradients in coral reef communities exposed to muddy river discharge in Pohnpei, Micronesia. Estuarine, Coastal and Shelf Science, 2008, 76, 14-20.	2.1	45
84	Low recruitment due to altered settlement substrata as primary constraint for coral communities under ocean acidification. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171536.	2.6	45
85	Chemical and Physical Environmental Conditions Underneath Mat- and Canopy-Forming Macroalgae, and Their Effects on Understorey Corals. PLoS ONE, 2010, 5, e12685.	2.5	41
86	In situ depletion of phytoplankton by an azooxanthellate soft coral. Limnology and Oceanography, 1998, 43, 354-356.	3.1	38
87	Effects of sedimentation, eutrophication, and chemical pollution on coral reef fishes. , 2015, , 145-153.		38
88	Ocean acidification reduces demersal zooplankton that reside in tropical coral reefs. Nature Climate Change, 2016, 6, 1124-1129.	18.8	36
89	Rehabilitation of coral reefs through removal of macroalgae: state of knowledge and considerations for management and implementation. Restoration Ecology, 2018, 26, 827-838.	2.9	35
90	Relationship of internal macrobioeroder densities in living massive Porites to turbidity and chlorophyll on the Australian Great Barrier Reef. Coral Reefs, 2011, 30, 97-107.	2.2	34

#	Article	IF	CITATIONS
91	Effects of suspended sediments and nutrient enrichment on juvenile corals. Marine Pollution Bulletin, 2017, 125, 166-175.	5.0	34
92	Symbiodinium Community Composition in Scleractinian Corals Is Not Affected by Life-Long Exposure to Elevated Carbon Dioxide. PLoS ONE, 2013, 8, e63985.	2.5	29
93	Genetic differentiation among populations of a broadcast spawning soft coral, Sinularia flexibilis , on the Great Barrier Reef. Marine Biology, 2001, 138, 517-525.	1.5	28
94	Effects of Land-Use Change on Characteristics and Dynamics of Watershed Discharges in Babeldaob, Palau, Micronesia. Journal of Marine Biology, 2011, 2011, 1-17.	1.0	26
95	Yes — Coral calcification rates have decreased in the last twenty-five years!. Marine Geology, 2013, 346, 400-402.	2.1	26
96	Variation in the health and biochemical condition of the coral Acropora tenuis along two water quality gradients on the Great Barrier Reef, Australia. Marine Pollution Bulletin, 2017, 119, 106-119.	5.0	26
97	Elevated CO2 Has Little Influence on the Bacterial Communities Associated With the pH-Tolerant Coral, Massive Porites spp Frontiers in Microbiology, 2018, 9, 2621.	3.5	26
98	Selective mortality in coastal reef organisms from an acute sedimentation event. Coral Reefs, 2007, 26, 69-69.	2.2	25
99	Temporal and spatial variation in fatty acid composition in Acropora tenuis corals along water quality gradients on the Great Barrier Reef, Australia. Coral Reefs, 2019, 38, 215-228.	2.2	25
100	Knowledge Gaps in the Biology, Ecology, and Management of the Pacific Crown-of-Thorns Sea Star <i>Acanthaster</i> sp. on Australia's Great Barrier Reef. Biological Bulletin, 2021, 241, 330-346.	1.8	25
101	Effects of variability in daily light integrals on the photophysiology of the corals Pachyseris speciosa and Acropora millepora. PLoS ONE, 2018, 13, e0203882.	2.5	24
102	The Great Barrier Reef: A source of CO2 to the atmosphere. Marine Chemistry, 2019, 210, 24-33.	2.3	24
103	Tissue loss and mortality in soft corals following mass-bleaching. Coral Reefs, 1999, 18, 54-54.	2.2	23
104	Relative roles of biological and physical processes influencing coral recruitment during the lag phase of reef community recovery. Scientific Reports, 2020, 10, 2471.	3.3	23
105	Ocean acidification: Linking science to management solutions using the Great Barrier Reef as a case study. Journal of Environmental Management, 2016, 182, 641-650.	7.8	22
106	Expanding ocean food production under climate change. Nature, 2022, 605, 490-496.	27.8	20
107	Tropical CO2 seeps reveal the impact of ocean acidification on coral reef invertebrate recruitment. Marine Pollution Bulletin, 2017, 124, 607-613.	5.0	19
108	Genetic differentiation among populations of the brooding soft coral Clavularia koellikeri on the Great Barrier Reef. Coral Reefs, 2002, 21, 233-241.	2.2	18

#	Article	IF	CITATIONS
109	Shifts in coralline algae, macroalgae, and coral juveniles in the Great Barrier Reef associated with presentâ€day ocean acidification. Global Change Biology, 2020, 26, 2149-2160.	9.5	18
110	Diel pCO2 variation among coral reefs and microhabitats at Lizard Island, Great Barrier Reef. Coral Reefs, 2020, 39, 1391-1406.	2.2	17
111	Pigmentation of massive corals as a simple bioindicator for marine water quality. Marine Pollution Bulletin, 2012, 65, 333-341.	5.0	16
112	Reef state and performance as indicators of cumulative impacts on coral reefs. Ecological Indicators, 2021, 123, 107335.	6.3	16
113	Quantifying pCO2 in biological ocean acidification experiments: A comparison of four methods. PLoS ONE, 2017, 12, e0185469.	2.5	15
114	Re-assessment of ossicle frequency patterns in sediment cores: rate of sedimentation related to Acanthaster planci. Coral Reefs, 1992, 11, 109-114.	2.2	14
115	Demographic aspects of the soft coral Sinularia flexibilis leading to local dominance on coral reefs. Hydrobiologia, 2004, 530-531, 433-441.	2.0	13
116	Reduced heterotrophy in the stony coral Galaxea fascicularis after life-long exposure to elevated carbon dioxide. Scientific Reports, 2016, 6, 27019.	3.3	13
117	Ocean acidification alters early successional coral reef communities and their rates of community metabolism. PLoS ONE, 2018, 13, e0197130.	2.5	13
118	Optimizing coral reef recovery with context-specific management actions at prioritized reefs. Journal of Environmental Management, 2021, 295, 113209.	7.8	12
119	Minor impacts of reduced pH on bacterial biofilms on settlement tiles along natural pH gradients at two CO2 seeps in Papua New Guinea. ICES Journal of Marine Science, 2017, 74, 978-987.	2.5	11
120	Progressive seawater acidification on the Great Barrier Reef continental shelf. Scientific Reports, 2020, 10, 18602.	3.3	11
121	Model for deriving benthic irradiance in the Great Barrier Reef from MODIS satellite imagery. Optics Express, 2019, 27, A1350.	3.4	11
122	Multispecific coral spawning events and extended breeding periods on an equatorial reef. Coral Reefs, 2020, 39, 1107-1123.	2.2	10
123	Coral micro- and macro-morphological skeletal properties in response to life-long acclimatization at CO2 vents in Papua New Guinea. Scientific Reports, 2021, 11, 19927.	3.3	10
124	Spatial patterns in shallow-water crinoid communities on the central Great Barrier Reef. Marine and Freshwater Research, 1994, 45, 1225.	1.3	9
125	Theme section on "Ocean Acidification and Coral Reefs― Coral Reefs, 2008, 27, 455-457.	2.2	7
126	Contrasting responses of the coral Acropora tenuis to moderate and strong light limitation in coastal waters. Marine Environmental Research, 2019, 147, 80-89.	2.5	7

#	Article	IF	CITATIONS
127	Pontellid copepods, Labidocera spp., affected by ocean acidification: A field study at natural CO2 seeps. PLoS ONE, 2017, 12, e0175663.	2.5	7
128	Effects of low pH on the coral reef cryptic invertebrate communities near CO2 vents in Papua New Guinea. PLoS ONE, 2021, 16, e0258725.	2.5	6
129	Effects of variable daily light integrals and elevated CO2 on the adult and juvenile performance of two Acropora corals. Marine Biology, 2022, 169, 1.	1.5	4
130	Biodiversity on the Great Barrier Reef. , 2000, , 127-144.		3
131	On Some Octocorallia (Alcyonacea) from Hong Kong, with Description of a New Species, <i>Paraminabea rubeusa</i> . Pacific Science, 2010, 64, 285-296.	0.6	3
132	Support for improved quality control but misplaced criticism of GBR science. Reply to viewpoint "The need for a formalised system of Quality Control for environmental policy-science―by P. Larcombe and P. Ridd (Marine Pollution Bulletin 126: 449–461, 2018). Marine Pollution Bulletin, 2018, 129, 357-363.	5.0	3
133	A benthic light index of water quality in the Great Barrier Reef, Australia. Marine Pollution Bulletin, 2021, 169, 112539.	5.0	3
134	Herbivory in Soft Corals: Correction. Science, 1996, 273, 295-296.	12.6	2
135	Evidence that water quality is an important driver of reef biota is not refuted: response to Ridd et al , 2011, 21, 3335-3336.		2
136	Neustonic copepods (Labidocera spp.) discovered living residentially in coral reefs. Marine Biodiversity, 2019, 49, 345-355.	1.0	1
137	Model for deriving benthic irradiance in the Great Barrier Reef from MODIS satellite imagery: erratum. Optics Express, 2020, 28, 27473.	3.4	1