
Joseph Marcotrigiano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1278749/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Innate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA. Nature, 2008, 454, 523-527.	27.8	646
2	Structural basis of RNA recognition and activation by innate immune receptor RIG-I. Nature, 2011, 479, 423-427.	27.8	364
3	Exosome RNA Unshielding Couples Stromal Activation to Pattern Recognition Receptor Signaling in Cancer. Cell, 2017, 170, 352-366.e13.	28.9	335
4	Structure of the core ectodomain of the hepatitis C virus envelope glycoprotein 2. Nature, 2014, 509, 381-384.	27.8	259
5	Structural basis for m7G recognition and 2′-O-methyl discrimination in capped RNAs by the innate immune receptor RIG-I. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 596-601.	7.1	257
6	RNAs Containing Modified Nucleotides Fail To Trigger RIG-I Conformational Changes for Innate Immune Signaling. MBio, 2016, 7, .	4.1	178
7	Structure of the catalytic domain of the hepatitis C virus NS2-3 protease. Nature, 2006, 442, 831-835.	27.8	174
8	Regulation of Retinoic Acid Inducible Gene-I (RIG-I) Activation by the Histone Deacetylase 6. EBioMedicine, 2016, 9, 195-206.	6.1	55
9	Blocking Hepatitis C Virus Infection with Recombinant Form of Envelope Protein 2 Ectodomain. Journal of Virology, 2009, 83, 11078-11089.	3.4	52
10	Quantitative Proteomics Identifies Serum Response Factor Binding Protein 1 as a Host Factor for Hepatitis C Virus Entry. Cell Reports, 2015, 12, 864-878.	6.4	50
11	RIG-I Uses an ATPase-Powered Translocation-Throttling Mechanism for Kinetic Proofreading of RNAs and Oligomerization. Molecular Cell, 2018, 72, 355-368.e4.	9.7	50
12	Phosphorylation-Dependent Feedback Inhibition of RIG-I by DAPK1 Identified by Kinome-wide siRNA Screening. Molecular Cell, 2017, 65, 403-415.e8.	9.7	40
13	Structural insights into hepatitis C virus receptor binding and entry. Nature, 2021, 598, 521-525.	27.8	38
14	Native Folding of a Recombinant gpE1/gpE2 Heterodimer Vaccine Antigen from a Precursor Protein Fused with Fc IgG. Journal of Virology, 2017, 91, .	3.4	33
15	HCV glycoprotein structures: what to expect from the unexpected. Current Opinion in Virology, 2015, 12, 53-58.	5.4	32
16	The autoinhibitory CARD2-Hel2i Interface of RIG-I governs RNA selection. Nucleic Acids Research, 2016, 44, 896-909.	14.5	32
17	Conformational Flexibility in the Immunoglobulin-Like Domain of the Hepatitis C Virus Glycoprotein E2. MBio, 2017, 8, .	4.1	31
18	HDX-MS reveals dysregulated checkpoints that compromise discrimination against self RNA during RIG-I mediated autoimmunity. Nature Communications, 2018, 9, 5366	12.8	26

#	Article	lF	CITATIONS
19	Novel E2 Glycoprotein Tetramer Detects Hepatitis C Virus–Specific Memory B Cells. Journal of Immunology, 2016, 197, 4848-4858.	0.8	23
20	Identification of a Novel Drug Lead That Inhibits HCV Infection and Cell-to-Cell Transmission by Targeting the HCV E2 Glycoprotein. PLoS ONE, 2014, 9, e111333.	2.5	18
21	Early T follicular helper cell activity accelerates hepatitis C virus-specific B cell expansion. Journal of Clinical Investigation, 2021, 131, .	8.2	15
22	Hepatitis C Virus Structure: Defined by What It Is Not. Cold Spring Harbor Perspectives in Medicine, 2020, 10, a036822.	6.2	14
23	Hepatitis C Virus Envelope Glycoproteins: A Balancing Act of Order and Disorder. Frontiers in Immunology, 2018, 9, 1917.	4.8	13
24	CD81 Receptor Regions outside the Large Extracellular Loop Determine Hepatitis C Virus Entry into Hepatoma Cells. Viruses, 2018, 10, 207.	3.3	13
25	Mitigation of T-cell dependent immunogenicity by reengineering factor VIIa analogue. Blood Advances, 2019, 3, 2668-2678.	5.2	7
26	Purification and Crystallization of NS5A Domain I of Hepatitis C Virus. Methods in Molecular Biology, 2009, 510, 85-94.	0.9	4
27	Overcoming Challenges of Hepatitis C Virus Envelope Glycoprotein Production in Mammalian Cells. Methods in Molecular Biology, 2019, 1911, 305-316.	0.9	3
28	Role of Cysteines in Stabilizing the Randomized Receptor Binding Domains within Feline Leukemia Virus Envelope Proteins. Journal of Virology, 2016, 90, 2971-2980.	3.4	2
29	The Structure of HCV. , 2016, , 31-64.		1
30	HCV neutralization goes elite. Immunity, 2022, 55, 195-197.	14.3	1
31	Virus structure and function. Current Opinion in Virology, 2013, 3, 101-102.	5.4	0

Hepatitis C Virus Endopeptidase 2., 2013, , 2472-2476.

0