
Swarup China

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1278547/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Morphology and mixing state of individual freshly emitted wildfire carbonaceous particles. Nature Communications, 2013, 4, 2122.	12.8	278
2	Enhanced light absorption by mixed source black and brown carbon particles in UK winter. Nature Communications, 2015, 6, 8435.	12.8	266
3	Morphology and mixing state of aged soot particles at a remote marine free troposphere site: Implications for optical properties. Geophysical Research Letters, 2015, 42, 1243-1250.	4.0	153
4	Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES). Atmospheric Chemistry and Physics, 2012, 12, 7647-7687.	4.9	94
5	Soot superaggregates from flaming wildfires and their direct radiative forcing. Scientific Reports, 2014, 4, 5508.	3.3	90
6	Radiative absorption enhancements by black carbon controlled by particle-to-particle heterogeneity in composition. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5196-5203.	7.1	84
7	Airborne soil organic particles generated byÂprecipitation. Nature Geoscience, 2016, 9, 433-437.	12.9	71
8	Marine and terrestrial influences on ice nucleating particles during continuous springtime measurements in an Arctic oilfield location. Atmospheric Chemistry and Physics, 2018, 18, 18023-18042.	4.9	70
9	Molecular characterization of free tropospheric aerosol collected at the Pico Mountain Observatory: a case study with a long-range transported biomass burning plume. Atmospheric Chemistry and Physics, 2015, 15, 5047-5068.	4.9	67
10	Aerosol Emissions from Great Lakes Harmful Algal Blooms. Environmental Science & Technology, 2018, 52, 397-405.	10.0	66
11	Effect of Traffic and Driving Characteristics on Morphology of Atmospheric Soot Particles at Freeway On-Ramps. Environmental Science & Technology, 2014, 48, 3128-3135.	10.0	65
12	Direct observation of ice nucleation events on individual atmospheric particles. Physical Chemistry Chemical Physics, 2016, 18, 29721-29731.	2.8	55
13	Anthropogenic influences on the physical state of submicron particulate matter over a tropical forest. Atmospheric Chemistry and Physics, 2017, 17, 1759-1773.	4.9	52
14	Progress in the Analysis of Complex Atmospheric Particles. Annual Review of Analytical Chemistry, 2016, 9, 117-143.	5.4	51
15	Ice nucleating particles in the marine boundary layer in the Canadian Arctic during summer 2014. Atmospheric Chemistry and Physics, 2019, 19, 1027-1039.	4.9	48
16	lce nucleation activity of diesel soot particles at cirrus relevant temperature conditions: Effects of hydration, secondary organics coating, soot morphology, and coagulation. Geophysical Research Letters, 2016, 43, 3580-3588.	4.0	47
17	Extensive Soot Compaction by Cloud Processing from Laboratory and Field Observations. Scientific Reports, 2019, 9, 11824.	3.3	47
18	Rupturing of Biological Spores As a Source of Secondary Particles in Amazonia. Environmental Science & Technology, 2016, 50, 12179-12186.	10.0	46

SWARUP CHINA

#	Article	IF	CITATIONS
19	Self-organizing layers from complex molecular anions. Nature Communications, 2018, 9, 1889.	12.8	43
20	Observation of Road Salt Aerosol Driving Inland Wintertime Atmospheric Chlorine Chemistry. ACS Central Science, 2020, 6, 684-694.	11.3	41
21	Contributions of transported Prudhoe Bay oil field emissions to the aerosol population in UtqiaÄįvik, Alaska. Atmospheric Chemistry and Physics, 2017, 17, 10879-10892.	4.9	37
22	Particle-Phase Diffusion Modulates Partitioning of Semivolatile Organic Compounds to Aged Secondary Organic Aerosol. Environmental Science & Technology, 2020, 54, 2595-2605.	10.0	37
23	Unexpected Contributions of Sea Spray and Lake Spray Aerosol to Inland Particulate Matter. Environmental Science and Technology Letters, 2018, 5, 405-412.	8.7	36
24	Morphology of diesel soot residuals from supercooled water droplets and ice crystals: implications for optical properties. Environmental Research Letters, 2015, 10, 114010.	5.2	35
25	Ice cloud formation potential by free tropospheric particles from longâ€range transport over the Northern Atlantic Ocean. Journal of Geophysical Research D: Atmospheres, 2017, 122, 3065-3079.	3.3	34
26	Aerosol and Cloud Experiments in the Eastern North Atlantic (ACE-ENA). Bulletin of the American Meteorological Society, 2022, 103, E619-E641.	3.3	33
27	Perturbations of the optical properties of mineral dust particles by mixing with black carbon: a numerical simulation study. Atmospheric Chemistry and Physics, 2015, 15, 6913-6928.	4.9	31
28	Fungal spores as a source of sodium salt particles in the Amazon basin. Nature Communications, 2018, 9, 4793.	12.8	31
29	Elemental Mixing State of Aerosol Particles Collected in Central Amazonia during GoAmazon2014/15. Atmosphere, 2017, 8, 173.	2.3	30
30	Fractal-like Tar Ball Aggregates from Wildfire Smoke. Environmental Science and Technology Letters, 2018, 5, 360-365.	8.7	29
31	Iceâ€Nucleating Particles That Impact Clouds and Climate: Observational and Modeling Research Needs. Reviews of Geophysics, 2022, 60, .	23.0	29
32	Comparison of Laser-Based and Sand Patch Measurements of Pavement Surface Macrotexture. Journal of Transportation Engineering, 2012, 138, 176-181.	0.9	28
33	Influence of pavement macrotexture on PM10 emissions from paved roads: A controlled study. Atmospheric Environment, 2012, 63, 313-326.	4.1	24
34	Chemical Imaging of Fine Mode Atmospheric Particles Collected from a Research Aircraft over Agricultural Fields. ACS Earth and Space Chemistry, 2020, 4, 2171-2184.	2.7	16
35	Physical Properties of Aerosol Internally Mixed With Soot Particles in a Biogenically Dominated Environment in California. Geophysical Research Letters, 2018, 45, 11,473.	4.0	15
36	A Technique to Measure Ice Nuclei in the Contact Mode. Journal of Atmospheric and Oceanic Technology, 2014, 31, 913-922.	1.3	14

SWARUP CHINA

#	Article	IF	CITATIONS
37	Characterization of Dust Particles' 3D Shape and Roughness with Nanometer Resolution. Aerosol Science and Technology, 2015, 49, 229-238.	3.1	14
38	Optical Properties of Airborne Soil Organic Particles. ACS Earth and Space Chemistry, 2017, 1, 511-521.	2.7	14
39	Effect of Thermodenuding on the Structure of Nascent Flame Soot Aggregates. Atmosphere, 2017, 8, 166.	2.3	14
40	Extreme Molecular Complexity Resulting in a Continuum of Carbonaceous Species in Biomass Burning Tar Balls from Wildfire Smoke. ACS Earth and Space Chemistry, 2021, 5, 2729-2739.	2.7	14
41	Aerosol Composition, Mixing State, and Phase State of Free Tropospheric Particles and Their Role in Ice Cloud Formation. ACS Earth and Space Chemistry, 2021, 5, 3499-3510.	2.7	14
42	Direct observation and assessment of phase states of ambient and lab-generated sub-micron particles upon humidification. RSC Advances, 2021, 11, 15264-15272.	3.6	13
43	Atmospheric Transport of North African Dustâ€Bearing Supermicron Freshwater Diatoms to South America: Implications for Iron Transport to the Equatorial North Atlantic Ocean. Geophysical Research Letters, 2021, 48, e2020GL090476.	4.0	12
44	Optical properties and composition of viscous organic particles found in the Southern Great Plains. Atmospheric Chemistry and Physics, 2020, 20, 11593-11606.	4.9	12
45	Performance Assessment of Portable Optical Particle Spectrometer (POPS). Sensors, 2020, 20, 6294.	3.8	11
46	Solid organic-coated ammonium sulfate particles at high relative humidity in the summertime Arctic atmosphere. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2104496119.	7.1	11
47	Impact of dry intrusion events on the composition and mixing state of particles during the winter Aerosol and Cloud Experiment in the Eastern North Atlantic (ACE-ENA). Atmospheric Chemistry and Physics, 2021, 21, 18123-18146.	4.9	10
48	Micro-spectroscopic and freezing characterization of ice-nucleating particles collected in the marine boundary layer in the eastern North Atlantic. Atmospheric Chemistry and Physics, 2022, 22, 5377-5398.	4.9	10
49	Evolution of Multispectral Aerosol Absorption Properties in a Biogenically-Influenced Urban Environment during the CARES Campaign. Atmosphere, 2017, 8, 217.	2.3	8
50	Emerging investigator series: influence of marine emissions and atmospheric processing on individual particle composition of summertime Arctic aerosol over the Bering Strait and Chukchi Sea. Environmental Sciences: Processes and Impacts, 2020, 22, 1201-1213.	3.5	8
51	Photochemical reactions on aerosols at West Antarctica: A molecular case-study of nitrate formation among sea salt aerosols. Science of the Total Environment, 2021, 758, 143586.	8.0	8
52	Heating-Induced Transformations of Atmospheric Particles: Environmental Transmission Electron Microscopy Study. Analytical Chemistry, 2018, 90, 9761-9768.	6.5	7
53	Particle phase-state variability in the North Atlantic free troposphere during summertime is determined by atmospheric transport patterns and sources. Atmospheric Chemistry and Physics, 2022, 22, 9033-9057.	4.9	7
54	Optical properties and radiative forcing of fractal-like tar ball aggregates from biomass burning. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 230, 65-74.	2.3	6

SWARUP CHINA

#	Article	IF	CITATIONS
55	Deciphering the Source of Primary Biological Aerosol Particles: A Pollen Case Study. ACS Earth and Space Chemistry, 2021, 5, 969-979.	2.7	6
56	Environmental Transmission Electron Microscopy of Individual Atmospheric Particles from the North Atlantic. Microscopy and Microanalysis, 2018, 24, 396-397.	0.4	5
57	Microanalysis of Primary Biological Particles from Model Grass over Its Life Cycle. ACS Earth and Space Chemistry, 2020, 4, 1895-1905.	2.7	5
58	Acyclic Terpenes Reduce Secondary Organic Aerosol Formation from Emissions of a Riparian Shrub. ACS Earth and Space Chemistry, 2021, 5, 1242-1253.	2.7	5
59	Deciphering the Incipient Phases of Ice–Mineral Interactions as a Precursor of Physical Weathering. ACS Earth and Space Chemistry, 2021, 5, 1233-1241.	2.7	5
60	A new method for operating a continuous-flow diffusion chamber to investigate immersion freezing: assessment and performance study. Atmospheric Measurement Techniques, 2020, 13, 6631-6643.	3.1	5
61	Molecular Characterization of Organosulfate-Dominated Aerosols over Agricultural Fields from the Southern Great Plains by High-Resolution Mass Spectrometry. ACS Earth and Space Chemistry, 2022, 6, 1733-1741.	2.7	5
62	Preface: Morphology and Internal Mixing of Atmospheric Particles. Atmosphere, 2018, 9, 249.	2.3	3
63	Carbonaceous deposits on aluminide coatings in tritium-producing assemblies. Nuclear Materials and Energy, 2020, 25, 100797.	1.3	2
64	Ice nucleation in the contact mode: Temperature and size dependence for selected dusts. , 2013, , .		1
65	Ice Nucleation Properties of Soil Derived Mineral and Soil Organic Particles. Microscopy and Microanalysis, 2019, 25, 2434-2435.	0.4	1
66	Chemical Interactions in the Plant–Atmosphere–Soil System. ACS Earth and Space Chemistry, 2021, 5, 3279-3280.	2.7	1
67	Chemical composition and morphological analysis of atmospheric particles from an intensive bonfire burning festival. Environmental Science Atmospheres, 2022, 2, 616-633.	2.4	1
68	Mineral Surface Transformations by Ice Nucleation. Microscopy and Microanalysis, 2019, 25, 2464-2465.	0.4	0
69	Machine Learning Approaches for Analysis of Multiscale Imaging Data for Atmospheric and Soil Particles. Microscopy and Microanalysis, 2019, 25, 194-195.	0.4	Ο