Zongping Shao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1278475/publications.pdf

Version: 2024-02-01

1099 56,154 694 112 citations h-index papers

g-index 720 720 720 30746 docs citations times ranked citing authors all docs

2571

195

#	Article	IF	CITATIONS
1	A high-performance cathode for the next generation of solid-oxide fuel cells. Nature, 2004, 431, 170-173.	27.8	2,737
2	Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3â^²l´ oxygen membrane. Journal of Membrane Science, 2000, 172, 177-188.	8.2	983
3	Nonstoichiometric Oxides as Low-Cost and Highly-Efficient Oxygen Reduction/Evolution Catalysts for Low-Temperature Electrochemical Devices. Chemical Reviews, 2015, 115, 9869-9921.	47.7	770
4	Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment. Chemical Society Reviews, 2015, 44, 5371-5408.	38.1	725
5	Nonradical reactions in environmental remediation processes: Uncertainty and challenges. Applied Catalysis B: Environmental, 2018, 224, 973-982.	20.2	694
6	Enhancing Electrocatalytic Activity of Perovskite Oxides by Tuning Cation Deficiency for Oxygen Reduction and Evolution Reactions. Chemistry of Materials, 2016, 28, 1691-1697.	6.7	635
7	Recent Progress in Metalâ€Organic Frameworks for Applications in Electrocatalytic and Photocatalytic Water Splitting. Advanced Science, 2017, 4, 1600371.	11.2	594
8	Enhancement of Pt and Pt-alloy fuel cell catalyst activity and durability via nitrogen-modified carbon supports. Energy and Environmental Science, 2010, 3, 1437.	30.8	586
9	A thermally self-sustained micro solid-oxide fuel-cell stack with high power density. Nature, 2005, 435, 795-798.	27.8	583
10	Recent progress on sodium ion batteries: potential high-performance anodes. Energy and Environmental Science, 2018, 11, 2310-2340.	30.8	561
11	A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries: The latest advancements and future perspectives. Materials Science and Engineering Reports, 2015, 98, 1-71.	31.8	501
12	Recent Advances and Prospective in Ruthenium-Based Materials for Electrochemical Water Splitting. ACS Catalysis, 2019, 9, 9973-10011.	11.2	491
13	Flexible Zn– and Li–air batteries: recent advances, challenges, and future perspectives. Energy and Environmental Science, 2017, 10, 2056-2080.	30.8	477
14	Synthesis, characterization and evaluation of cation-ordered LnBaCo2O5+ as materials of oxygen permeation membranes and cathodes of SOFCs. Acta Materialia, 2008, 56, 4876-4889.	7.9	461
15	A Perovskite Electrocatalyst for Efficient Hydrogen Evolution Reaction. Advanced Materials, 2016, 28, 6442-6448.	21.0	429
16	Insights into perovskite-catalyzed peroxymonosulfate activation: Maneuverable cobalt sites for promoted evolution of sulfate radicals. Applied Catalysis B: Environmental, 2018, 220, 626-634.	20.2	428
17	Progress in Solid Oxide Fuel Cells with Nickel-Based Anodes Operating on Methane and Related Fuels. Chemical Reviews, 2013, 113, 8104-8151.	47.7	420
18	Progress in understanding and development of Ba0.5Sr0.5Co0.8Fe0.2O3â~δ-based cathodes for intermediate-temperature solid-oxide fuel cells: A review. Journal of Power Sources, 2009, 192, 231-246.	7.8	409

#	Article	IF	CITATIONS
19	SrNb _{0.1} Co _{0.7} Fe _{0.2} O _{3â²'<i>δ</i>} Perovskite as a Nextâ€Generation Electrocatalyst for Oxygen Evolution in Alkaline Solution. Angewandte Chemie - International Edition, 2015, 54, 3897-3901.	13.8	400
20	Recent advances in nanostructured metal nitrides for water splitting. Journal of Materials Chemistry A, 2018, 6, 19912-19933.	10.3	392
21	Surface controlled generation of reactive radicals from persulfate by carbocatalysis on nanodiamonds. Applied Catalysis B: Environmental, 2016, 194, 7-15.	20.2	390
22	Advanced synthesis of materials for intermediate-temperature solid oxide fuel cells. Progress in Materials Science, 2012, 57, 804-874.	32.8	372
23	Metal oxide-based materials as an emerging family of hydrogen evolution electrocatalysts. Energy and Environmental Science, 2020, 13, 3361-3392.	30.8	370
24	A Perovskite Nanorod as Bifunctional Electrocatalyst for Overall Water Splitting. Advanced Energy Materials, 2017, 7, 1602122.	19.5	369
25	Direct evidence of boosted oxygen evolution over perovskite by enhanced lattice oxygen participation. Nature Communications, 2020, 11, 2002.	12.8	366
26	Advances in non-enzymatic glucose sensors based on metal oxides. Journal of Materials Chemistry B, 2016, 4, 7333-7349.	5.8	348
27	Intermediate-temperature electrochemical performance of a polycrystalline PrBaCo2O5+ cathode on samarium-doped ceria electrolyte. Journal of Power Sources, 2009, 188, 96-105.	7.8	330
28	Thermal-expansion offset for high-performance fuel cell cathodes. Nature, 2021, 591, 246-251.	27.8	328
29	Enhancing Electrocatalytic Activity for Hydrogen Evolution by Strongly Coupled Molybdenum Nitride@Nitrogen-Doped Carbon Porous Nano-Octahedrons. ACS Catalysis, 2017, 7, 3540-3547.	11.2	306
30	Molten salt synthesis of nitrogen-doped carbon with hierarchical pore structures for use as high-performance electrodes in supercapacitors. Carbon, 2015, 93, 48-58.	10.3	293
31	Self-Assembled Triple-Conducting Nanocomposite as a Superior Protonic Ceramic Fuel Cell Cathode. Joule, 2019, 3, 2842-2853.	24.0	292
32	Recent Advances in Novel Nanostructuring Methods of Perovskite Electrocatalysts for Energyâ€Related Applications. Small Methods, 2018, 2, 1800071.	8.6	285
33	Perovskite/Carbon Composites: Applications in Oxygen Electrocatalysis. Small, 2017, 13, 1603793.	10.0	277
34	The use of nitrogen-doped graphene supporting Pt nanoparticles as a catalyst for methanol electrocatalytic oxidation. Carbon, 2013, 52, 181-192.	10.3	275
35	Phosphorusâ€Doped Perovskite Oxide as Highly Efficient Water Oxidation Electrocatalyst in Alkaline Solution. Advanced Functional Materials, 2016, 26, 5862-5872.	14.9	271
36	Ba effect in doped Sr(Co0.8Fe0.2)O3-δon the phase structure and oxygen permeation properties of the dense ceramic membranes. Separation and Purification Technology, 2001, 25, 419-429.	7.9	267

#	Article	IF	Citations
37	Mixed Conducting Perovskite Materials as Superior Catalysts for Fast Aqueous-Phase Advanced Oxidation: A Mechanistic Study. ACS Catalysis, 2017, 7, 388-397.	11.2	260
38	Recent Progress on Advanced Materials for Solidâ€Oxide Fuel Cells Operating Below 500 °C. Advanced Materials, 2017, 29, 1700132.	21.0	257
39	Nitrogen-doped simple and complex oxides for photocatalysis: A review. Progress in Materials Science, 2018, 92, 33-63.	32.8	257
40	Perovskite Oxide Based Electrodes for Highâ€Performance Photoelectrochemical Water Splitting. Angewandte Chemie - International Edition, 2020, 59, 136-152.	13.8	253
41	A Highâ€Performance Electrocatalyst for Oxygen Evolution Reaction: LiCo _{0.8} Fe _{0.2} O ₂ . Advanced Materials, 2015, 27, 7150-7155.	21.0	249
42	Coâ€doping Strategy for Developing Perovskite Oxides as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction. Advanced Science, 2016, 3, 1500187.	11.2	245
43	An Amorphous Nickel–Ironâ€Based Electrocatalyst with Unusual Local Structures for Ultrafast Oxygen Evolution Reaction. Advanced Materials, 2019, 31, e1900883.	21.0	243
44	Zirconium doping effect on the performance of proton-conducting BaZryCe0.8â^'yY0.2O3â^'δ (0.0â‰y≩.8) for fuel cell applications. Journal of Power Sources, 2009, 193, 400-407.	7.8	242
45	Facile Synthesis of Nanocrystalline TiO ₂ Mesoporous Microspheres for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2011, 115, 2529-2536.	3.1	242
46	Performance of a mixed-conducting ceramic membrane reactor with high oxygen permeability for methane conversion. Journal of Membrane Science, 2001, 183, 181-192.	8.2	237
47	Molecular Design of Mesoporous NiCo ₂ O ₄ and NiCo ₂ S ₄ with Subâ€Micrometerâ€Polyhedron Architectures for Efficient Pseudocapacitive Energy Storage. Advanced Functional Materials, 2017, 27, 1701229.	14.9	230
48	Recent advances in the interface engineering of solid-state Li-ion batteries with artificial buffer layers: challenges, materials, construction, and characterization. Energy and Environmental Science, 2019, 12, 1780-1804.	30.8	230
49	Advances in Cathode Materials for Solid Oxide Fuel Cells: Complex Oxides without Alkaline Earth Metal Elements. Advanced Energy Materials, 2015, 5, 1500537.	19.5	229
50	Double Perovskites in Catalysis, Electrocatalysis, and Photo(electro)catalysis. Trends in Chemistry, 2019, 1, 410-424.	8.5	227
51	Re-evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3â^î^perovskite as oxygen semi-permeable membrane. Journal of Membrane Science, 2007, 291, 148-156.	8.2	226
52	Fundamental Understanding of Photocurrent Hysteresis in Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1803017.	19.5	224
53	Synthesis of pristine and carbon-coated Li4Ti5O12 and their low-temperature electrochemical performance. Journal of Power Sources, 2010, 195, 4997-5004.	7.8	220
54	Evaluation of A-site cation-deficient (Ba0.5Sr0.5)1â^'xCo0.8Fe0.2O3â^'Î^ (x>0) perovskite as a solid-oxide fuel cell cathode. Journal of Power Sources, 2008, 182, 24-31.	7.8	218

#	Article	IF	CITATIONS
55	Selfâ€Catalyzed Growth of Co, Nâ€Codoped CNTs on Carbonâ€Encased CoS <i>_x</i> Surface: A Nobleâ€Metalâ€Free Bifunctional Oxygen Electrocatalyst for Flexible Solid Zn–Air Batteries. Advanced Functional Materials, 2019, 29, 1904481.	14.9	217
56	Nanodiamonds in sp 2 /sp 3 configuration for radical to nonradical oxidation: Core-shell layer dependence. Applied Catalysis B: Environmental, 2018, 222, 176-181.	20.2	214
57	Bigger is Surprisingly Better: Agglomerates of Larger RuP Nanoparticles Outperform Benchmark Pt Nanocatalysts for the Hydrogen Evolution Reaction. Advanced Materials, 2018, 30, e1800047.	21.0	212
58	Metal-organic frameworks derived porous carbon, metal oxides and metal sulfides-based compounds for supercapacitors application. Energy Storage Materials, 2020, 26, 1-22.	18.0	208
59	Promotion of Oxygen Reduction by Exsolved Silver Nanoparticles on a Perovskite Scaffold for Low-Temperature Solid Oxide Fuel Cells. Nano Letters, 2016, 16, 512-518.	9.1	202
60	Anion Doping: A New Strategy for Developing Highâ∈Performance Perovskiteâ∈Type Cathode Materials of Solid Oxide Fuel Cells. Advanced Energy Materials, 2017, 7, 1700242.	19.5	198
61	A porous LiFePO4 and carbon nanotube composite. Chemical Communications, 2010, 46, 7151.	4.1	195
62	Designing Highâ€Valence Metal Sites for Electrochemical Water Splitting. Advanced Functional Materials, 2021, 31, 2009779.	14.9	195
63	Boosting Oxygen Evolution Reaction by Creating Both Metal Ion and Latticeâ€Oxygen Active Sites in a Complex Oxide. Advanced Materials, 2020, 32, e1905025.	21.0	190
64	Unusual synergistic effect in layered Ruddlesdenâ^'Popper oxide enables ultrafast hydrogen evolution. Nature Communications, 2019, 10, 149.	12.8	187
65	Water Splitting with an Enhanced Bifunctional Double Perovskite. ACS Catalysis, 2018, 8, 364-371.	11.2	186
66	Developing a "Waterâ€Defendable―and "Dendriteâ€Free―Lithiumâ€Metal Anode Using a Simple and P GeCl ₄ Pretreatment Method. Advanced Materials, 2018, 30, e1705711.	romising 21.0	186
67	La-doped BaFeO3â^'δ perovskite as a cobalt-free oxygen reduction electrode for solid oxide fuel cells with oxygen-ion conducting electrolyte. Journal of Materials Chemistry, 2012, 22, 15071.	6.7	184
68	Assessment of Ba0.5Sr0.5Co1â^'yFeyO3â^'δ (y=0.0â€"1.0) for prospective application as cathode for IT-SOFCs or oxygen permeating membrane. Electrochimica Acta, 2007, 52, 7343-7351.	5.2	182
69	Highâ€Quality Ruddlesden–Popper Perovskite Film Formation for Highâ€Performance Perovskite Solar Cells. Advanced Materials, 2021, 33, e2002582.	21.0	182
70	A niobium and tantalum co-doped perovskite cathode for solid oxide fuel cells operating below 500 °C. Nature Communications, 2017, 8, 13990.	12.8	180
71	Systematic Study of Oxygen Evolution Activity and Stability on La _{$13e$"(i>xxxxxxxx<!--</th--><th>8.0</th><th>173</th>}	8.0	173
72	Two orders of magnitude enhancement in oxygen evolution reactivity on amorphous Ba _{0.5} Sr _{0.5} Co _{0.8} Fe _{0.2} O _{3â^Î} nanofilms with tunable oxidation state. Science Advances, 2017, 3, e1603206.	10.3	170

#	Article	IF	Citations
73	Simultaneous Power Conversion Efficiency and Stability Enhancement of Cs ₂ AgBiBr ₆ Leadâ€Free Inorganic Perovskite Solar Cell through Adopting a Multifunctional Dye Interlayer. Advanced Functional Materials, 2020, 30, 2001557.	14.9	169
74	Facile spray-drying/pyrolysis synthesis of core–shell structure graphite/silicon-porous carbon composite as a superior anode for Li-ion batteries. Journal of Power Sources, 2014, 248, 721-728.	7.8	167
75	Advances in three-dimensional graphene-based materials: configurations, preparation and application in secondary metal (Li, Na, K, Mg, Al)-ion batteries. Energy and Environmental Science, 2019, 12, 2030-2053.	30.8	163
76	Surface exchange and bulk diffusion properties of Ba0.5Sr0.5Co0.8Fe0.2O3â~δ mixed conductor. International Journal of Hydrogen Energy, 2011, 36, 6948-6956.	7.1	161
77	Synthesis, oxygen permeation study and membrane performance of a Ba0.5Sr0.5Co0.8Fe0.2O3â ⁻ Î ⁻ oxygen-permeable dense ceramic reactor for partial oxidation of methane to syngas. Separation and Purification Technology, 2001, 25, 97-116.	7.9	160
78	Highâ∈Performance GeTeâ∈Based Thermoelectrics: from Materials to Devices. Advanced Energy Materials, 2020, 10, 2000367.	19.5	160
79	A new symmetric solid-oxide fuel cell with La0.8Sr0.2Sc0.2Mn0.8O3-l´ perovskite oxide as both the anode and cathode. Acta Materialia, 2009, 57, 1165-1175.	7.9	158
80	Evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3â^î^as a potential cathode for an anode-supported proton-conducting solid-oxide fuel cell. Journal of Power Sources, 2008, 180, 15-22.	7.8	156
81	Toward Reducing the Operation Temperature of Solid Oxide Fuel Cells: Our Past 15 Years of Efforts in Cathode Development. Energy & Samp; Fuels, 2020, 34, 15169-15194.	5.1	152
82	Research progress and materials selection guidelines on mixed conducting perovskite-type ceramic membranes for oxygen production. RSC Advances, 2011, 1, 1661.	3.6	143
83	Binder-free \hat{l} ±-MoO3 nanobelt electrode for lithium-ion batteries utilizing van der Waals forces for film formation and connection with current collector. Journal of Materials Chemistry A, 2013, 1, 4736.	10.3	142
84	Defect engineering of oxide perovskites for catalysis and energy storage: synthesis of chemistry and materials science. Chemical Society Reviews, 2021, 50, 10116-10211.	38.1	140
85	Screening highly active perovskites for hydrogen-evolving reaction via unifying ionic electronegativity descriptor. Nature Communications, 2019, 10, 3755.	12.8	139
86	Ruddlesden–Popper perovskites in electrocatalysis. Materials Horizons, 2020, 7, 2519-2565.	12.2	139
87	Recent Advances in Cs ₂ AgBiBr ₆ -Based Halide Double Perovskites as Lead-Free and Inorganic Light Absorbers for Perovskite Solar Cells. Energy & Samp; Fuels, 2020, 34, 10513-10528.	5.1	139
88	Single-phase perovskite oxide with super-exchange induced atomic-scale synergistic active centers enables ultrafast hydrogen evolution. Nature Communications, 2020, 11, 5657.	12.8	134
89	High performance cobalt-free perovskite cathode for intermediate temperature solid oxide fuel cells. Journal of Materials Chemistry, 2010, 20, 9619.	6.7	133
90	Recent advances in anion-doped metal oxides for catalytic applications. Journal of Materials Chemistry A, 2019, 7, 7280-7300.	10.3	133

#	Article	IF	Citations
91	Efficient stabilization of cubic perovskite SrCoO3â^Î by B-site low concentration scandium doping combined with sol–gel synthesis. Journal of Alloys and Compounds, 2008, 455, 465-470.	5.5	132
92	Boosting performance of lanthanide magnetism perovskite for advanced oxidation through lattice doping with catalytically inert element. Chemical Engineering Journal, 2019, 355, 721-730.	12.7	132
93	Advances in Zeolite Imidazolate Frameworks (ZIFs) Derived Bifunctional Oxygen Electrocatalysts and Their Application in Zinc–Air Batteries. Advanced Energy Materials, 2021, 11, 2100514.	19.5	132
94	Co ₃ O ₄ Nanosheets as Active Material for Hybrid Zn Batteries. Small, 2018, 14, e1800225.	10.0	131
95	Combustion synthesis of high-performance Li4Ti5O12 for secondary Li-ion battery. Ceramics International, 2009, 35, 1757-1768.	4.8	130
96	Recent Advances in Perovskite Oxides as Electrode Materials for Nonaqueous Lithium–Oxygen Batteries. Advanced Energy Materials, 2017, 7, 1602674.	19.5	129
97	Progress and Prospects in Symmetrical Solid Oxide Fuel Cells with Two Identical Electrodes. Advanced Energy Materials, 2015, 5, 1500188.	19.5	128
98	Rationally Designed Hierarchically Structured Tungsten Nitride and Nitrogenâ€Rich Grapheneâ€Like Carbon Nanocomposite as Efficient Hydrogen Evolution Electrocatalyst. Advanced Science, 2018, 5, 1700603.	11.2	128
99	Highâ€Performance Perovskite Composite Electrocatalysts Enabled by Controllable Interface Engineering. Small, 2021, 17, e2101573.	10.0	128
100	A new carbon fuel cell with high power output by integrating with in situ catalytic reverse Boudouard reaction. Electrochemistry Communications, 2009, 11, 1265-1268.	4.7	126
101	A novel efficient oxide electrode for electrocatalytic oxygen reduction at 400–600 °C. Chemical Communications, 2008, , 5791.	4.1	125
102	SrCo _{0.9} Ti _{0.1} O _{3â^î^(} As a New Electrocatalyst for the Oxygen Evolution Reaction in Alkaline Electrolyte with Stable Performance. ACS Applied Materials & Samp; Interfaces, 2015, 7, 17663-17670.	8.0	125
103	New reduced-temperature ceramic fuel cells with dual-ion conducting electrolyte and triple-conducting double perovskite cathode. Journal of Materials Chemistry A, 2019, 7, 13265-13274.	10.3	125
104	Bifunctionality from Synergy: CoP Nanoparticles Embedded in Amorphous CoOx Nanoplates with Heterostructures for Highly Efficient Water Electrolysis. Advanced Science, 2018, 5, 1800514.	11.2	124
105	Process investigation, electrochemical characterization and optimization of LiFePO4/C composite from mechanical activation using sucrose as carbon source. Electrochimica Acta, 2009, 54, 2861-2868.	5. 2	122
106	Utilizing ion leaching effects for achieving high oxygen-evolving performance on hybrid nanocomposite with self-optimized behaviors. Nature Communications, 2020, 11, 3376.	12.8	122
107	Hydrogen spillover in complex oxide multifunctional sites improves acidic hydrogen evolution electrocatalysis. Nature Communications, 2022, 13, 1189.	12.8	122
108	Recent Advances in Metalâ€Organic Framework Derivatives as Oxygen Catalysts for Zincâ€Air Batteries. Batteries and Supercaps, 2019, 2, 272-289.	4.7	121

#	Article	lF	Citations
109	Advances in Porous Perovskites: Synthesis and Electrocatalytic Performance in Fuel Cells and Metal–Air Batteries. Energy and Environmental Materials, 2020, 3, 121-145.	12.8	119
110	Barium- and strontium-enriched (Ba0.5Sr0.5)1+xCo0.8Fe0.2O3â~δ oxides as high-performance cathodes for intermediate-temperature solid-oxide fuel cells. Acta Materialia, 2008, 56, 2687-2698.	7.9	118
111	Synthesis of nanocrystalline conducting composite oxides based on a non-ion selective combined complexing process for functional applications. Journal of Alloys and Compounds, 2006, 426, 368-374.	5.5	117
112	Boosting Oxygen Reduction Reaction Activity of Palladium by Stabilizing Its Unusual Oxidation States in Perovskite. Chemistry of Materials, 2015, 27, 3048-3054.	6.7	117
113	Selenic Acid Etching Assisted Vacancy Engineering for Designing Highly Active Electrocatalysts toward the Oxygen Evolution Reaction. Advanced Materials, 2021, 33, e2007523.	21.0	116
114	Systematic investigation on new SrCo1â^'yNbyO3â^'Î' ceramic membranes with high oxygen semi-permeability. Journal of Membrane Science, 2008, 323, 436-443.	8.2	114
115	Plasma activation and atomic layer deposition of TiO2 on polypropylene membranes for improved performances of lithium-ion batteries. Journal of Membrane Science, 2014, 458, 217-224.	8.2	113
116	Flexible, Flameâ€Resistant, and Dendriteâ€Impermeable Gelâ€Polymer Electrolyte for Li–O ₂ /Air Batteries Workable Under Hurdle Conditions. Small, 2018, 14, e1801798.	10.0	113
117	A Cobaltâ€Free Multiâ€Phase Nanocomposite as Nearâ€Ideal Cathode of Intermediateâ€Temperature Solid Oxide Fuel Cells Developed by Smart Selfâ€Assembly. Advanced Materials, 2020, 32, e1906979.	21.0	113
118	Fundamental Understanding and Application of Ba _{0.5} Fe _{0.2} O _{3â^îÎ} Perovskite in Energy Storage and Conversion: Past, Present, and Future. Energy &	5.1	113
119	Nitrogen- and TiN-modified Li4Ti5O12: one-step synthesis and electrochemical performance optimization. Journal of Materials Chemistry, 2012, 22, 17773.	6.7	112
120	Properties and performance of A-site deficient (Ba0.5Sr0.5)1â^'xCo0.8Fe0.2O3â^'Î for oxygen permeating membrane. Journal of Membrane Science, 2007, 306, 318-328.	8.2	111
121	Boosting the Activity of BaCo _{0.4} Fe _{0.4} Zr _{0.1} Y _{0.1} O _{3â°'} <i>_{i'}< Perovskite for Oxygen Reduction Reactions at Lowâ€toâ€Intermediate Temperatures through Tuning Bâ€Site Cation Deficiency, Advanced Energy Materials, 2019, 9, 1902384.</i>	i> 19.5	111
122	Investigation on POM reaction in a new perovskite membrane reactor. Catalysis Today, 2001, 67, 3-13.	4.4	109
123	Cobalt Oxide and Cobaltâ€Graphitic Carbon Core–Shell Based Catalysts with Remarkably High Oxygen Reduction Reaction Activity. Advanced Science, 2016, 3, 1600060.	11.2	109
124	A Universal Strategy to Design Superior Waterâ€Splitting Electrocatalysts Based on Fast In Situ Reconstruction of Amorphous Nanofilm Precursors. Advanced Materials, 2018, 30, e1804333.	21.0	108
125	Electrochemistry and energy conversion features of protonic ceramic cells with mixed ionic-electronic electrolytes. Energy and Environmental Science, 2022, 15, 439-465.	30.8	108
126	Novel SrSc0.2Co0.8O3â° as a cathode material for low temperature solid-oxide fuel cell. Electrochemistry Communications, 2008, 10, 1647-1651.	4.7	107

#	Article	IF	CITATIONS
127	BaNb0.05Fe0.95O3â^î^as a new oxygen reduction electrocatalyst for intermediate temperature solid oxide fuel cells. Journal of Materials Chemistry A, 2013, 1, 9781.	10.3	107
128	Rational Design of Agâ€Based Catalysts for the Electrochemical CO ₂ Reduction to CO: A Review. ChemSusChem, 2020, 13, 39-58.	6.8	106
129	Systematic evaluation of Co-free LnBaFe2O5+ \hat{l} ′ (Ln=Lanthanides or Y) oxides towards the application as cathodes for intermediate-temperature solid oxide fuel cells. Electrochimica Acta, 2012, 78, 466-474.	5.2	105
130	Facile synthesis of nitrogen-doped carbon nanotubes encapsulating nickel cobalt alloys 3D networks for oxygen evolution reaction in an alkaline solution. Journal of Power Sources, 2017, 338, 26-33.	7.8	105
131	Design of Perovskite Oxides as Anion-Intercalation-Type Electrodes for Supercapacitors: Cation Leaching Effect. ACS Applied Materials & Samp; Interfaces, 2016, 8, 23774-23783.	8.0	101
132	Scalable synthesis of self-standing sulfur-doped flexible graphene films as recyclable anode materials for low-cost sodium-ion batteries. Carbon, 2016, 107, 67-73.	10.3	101
133	Trapping sulfur in hierarchically porous, hollow indented carbon spheres: a high-performance cathode for lithium–sulfur batteries. Journal of Materials Chemistry A, 2016, 4, 9526-9535.	10.3	100
134	Evaluation of the CO ₂ Poisoning Effect on a Highly Active Cathode SrSc _{0.175} Nb _{0.025} Co _{0.8} O _{3-Î} in the Oxygen Reduction Reaction. ACS Applied Materials & Amp; Interfaces, 2016, 8, 3003-3011.	8.0	99
135	Highly Defective Layered Double Perovskite Oxide for Efficient Energy Storage via Reversible Pseudocapacitive Oxygenâ€Anion Intercalation. Advanced Energy Materials, 2018, 8, 1702604.	19.5	99
136	Facile Mechanochemical Synthesis of Nano SnO ₂ /Graphene Composite from Coarse Metallic Sn and Graphite Oxide: An Outstanding Anode Material for Lithiumâ€ion Batteries. Chemistry - A European Journal, 2014, 20, 4055-4063.	3.3	98
137	Facile synthesis of a MoO2–Mo2C–C composite and its application as favorable anode material for lithium-ion batteries. Journal of Power Sources, 2016, 307, 552-560.	7.8	98
138	Highâ€Performance Platinumâ€Perovskite Composite Bifunctional Oxygen Electrocatalyst for Rechargeable Zn–Air Battery. Advanced Energy Materials, 2020, 10, 1903271.	19.5	98
139	Synthesis and oxygen permeation study of novel perovskite-type BaBixCo0.2Fe0.8â^'xO3â^'δ ceramic membranes. Journal of Membrane Science, 2000, 164, 167-176.	8.2	97
140	Proton-conducting fuel cells operating on hydrogen, ammonia and hydrazine at intermediate temperatures. International Journal of Hydrogen Energy, 2010, 35, 2637-2642.	7.1	97
141	Green synthesis of mesoporous ZnFe2O4/C composite microspheres as superior anode materials for lithium-ion batteries. Journal of Power Sources, 2014, 258, 305-313.	7.8	97
142	Solidâ€Oxide Fuel Cells: Recent Progress on Advanced Materials for Solidâ€Oxide Fuel Cells Operating Below 500 °C (Adv. Mater. 48/2017). Advanced Materials, 2017, 29, 1770345.	21.0	97
143	Smart Construction of an Intimate Lithium Garnet Interface for Allâ€Solidâ€State Batteries by Tuning the Tension of Molten Lithium. Advanced Functional Materials, 2021, 31, 2101556.	14.9	97
144	A new dual-ion hybrid energy storage system with energy density comparable to that of ternary lithium ion batteries. Journal of Materials Chemistry A, 2020, 8, 2571-2580.	10.3	95

#	Article	IF	CITATIONS
145	High power-density single-chamber fuel cells operated on methane. Journal of Power Sources, 2006, 162, 589-596.	7.8	94
146	Searching General Sufficientâ€andâ€Necessary Conditions for Ultrafast Hydrogenâ€Evolving Electrocatalysis. Advanced Functional Materials, 2019, 29, 1900704.	14.9	94
147	Surprisingly High Activity for Oxygen Reduction Reaction of Selected Oxides Lacking Long Oxygen-Ion Diffusion Paths at Intermediate Temperatures: A Case Study of Cobalt-Free BaFeO _{3-Î} . ACS Applied Materials & Diffusion Paths at Interfaces, 2014, 6, 11180-11189.	8.0	93
148	Probing CO2 reaction mechanisms and effects on the SrNb0.1Co0.9â^'xFexO3â^'Î' cathodes for solid oxide fuel cells. Applied Catalysis B: Environmental, 2015, 172-173, 52-57.	20.2	93
149	Perovskite Oxide Catalysts for Advanced Oxidation Reactions. Advanced Functional Materials, 2021, 31, 2102089.	14.9	93
150	A Comparative Study of Oxygen Reduction Reaction on Bi- and La-Doped SrFeO[sub 3â^Î] Perovskite Cathodes. Journal of the Electrochemical Society, 2011, 158, B132.	2.9	92
151	Structural and oxygen-transport studies of double perovskites PrBa $<$ sub $<$ 1 \hat{a} ^ $<$ x $<$ /sub $>$ Co $<$ sub $>$ 2 $<$ /sub $>$ O $<$ sub $>$ 5+ \hat{a} < $<$ 1sub $>$ 0, 0.05, and 0.10) toward their application as superior oxygen reduction electrodes. Journal of Materials Chemistry A, 2014, 2, 20520-20529.	10.3	92
152	Nanostructured Co-Mn containing perovskites for degradation of pollutants: Insight into the activity and stability. Journal of Hazardous Materials, 2018, 349, 177-185.	12.4	92
153	An Aâ€Siteâ€Deficient Perovskite offers High Activity and Stability for Lowâ€Temperature Solidâ€Oxide Fuel Cells. ChemSusChem, 2013, 6, 2249-2254.	6.8	90
154	Activity and Stability of Ruddlesden–Popper‶ype La _{<i>n</i>+1} Ni _{<i>n</i>} O _{3<i>n</i>+1} (<i>n</i> =1, 2, 3, and â^ž) Electrocatalysts for Oxygen Reduction and Evolution Reactions in Alkaline Media. Chemistry - A European Journal, 2016, 22, 2719-2727.	3.3	90
155	Enhancing Electrode Performance by Exsolved Nanoparticles: A Superior Cobalt-Free Perovskite Electrocatalyst for Solid Oxide Fuel Cells. ACS Applied Materials & Electrocatalyst for Solid Oxide Fuel Cells. ACS Applied Materials & Electrocatalyst for Solid Oxide Fuel Cells. ACS Applied Materials & Electrocatalyst for Solid Oxide Fuel Cells. ACS Applied Materials & Electrocatalyst for Solid Oxide Fuel Cells. ACS Applied Materials & Electrocatalyst for Solid Oxide Fuel Cells.	8.0	90
156	Recent Advances in the Understanding of the Surface Reconstruction of Oxygen Evolution Electrocatalysts and Materials Development. Electrochemical Energy Reviews, 2021, 4, 566-600.	25.5	90
157	Properties and performance of Ba0.5Sr0.5Co0.8Fe0.2O3â~δ+Sm0.2Ce0.8O1.9 composite cathode. Journal of Power Sources, 2008, 179, 60-68.	7.8	89
158	Recent Advances in Filler Engineering of Polymer Electrolytes for Solid-State Li-Ion Batteries: A Review. Energy & Energy & Review. Energy & Energy	5.1	89
159	Electrochemical Water Splitting: Bridging the Gaps Between Fundamental Research and Industrial Applications. Energy and Environmental Materials, 2023, 6, .	12.8	89
160	Facile Synthesis of a 3D Nanoarchitectured Li ₄ Ti ₅ O ₁₂ Electrode for Ultrafast Energy Storage. Advanced Energy Materials, 2016, 6, 1500924.	19.5	88
161	Stable direct-methane solid oxide fuel cells with calcium-oxide-modified nickel-based anodes operating at reduced temperatures. Applied Energy, 2016, 164, 563-571.	10.1	88
162	A Universal and Facile Way for the Development of Superior Bifunctional Electrocatalysts for Oxygen Reduction and Evolution Reactions Utilizing the Synergistic Effect. Chemistry - A European Journal, 2014, 20, 15533-15542.	3.3	87

#	Article	IF	CITATIONS
163	Perovskite SrCo _{0.9} Nb _{0.1} O _{3â^³<i>δ</i>} as an Anionâ€Intercalated Electrode Material for Supercapacitors with Ultrahigh Volumetric Energy Density. Angewandte Chemie - International Edition, 2016, 55, 9576-9579.	13.8	87
164	AÂsurface-modified antiperovskite asÂan electrocatalyst for water oxidation. Nature Communications, 2018, 9, 2326.	12.8	87
165	Enabling High and Stable Electrocatalytic Activity of Ironâ€Based Perovskite Oxides for Water Splitting by Combined Bulk Doping and Morphology Designing. Advanced Materials Interfaces, 2019, 6, 1801317.	3.7	87
166	Perovskites for protonic ceramic fuel cells: a review. Energy and Environmental Science, 2022, 15, 2200-2232.	30.8	87
167	Ba0.5Sr0.5Co0.8Fe0.2O3â^î^f-LaCoO3 composite cathode for Sm0.2Ce0.8O1.9-electrolyte based intermediate-temperature solid-oxide fuel cells. Journal of Power Sources, 2007, 168, 330-337.	7.8	86
168	Advanced Symmetric Solid Oxide Fuel Cell with an Infiltrated K ₂ NiF ₄ -Type La ₂ NiO ₄ Electrode. Energy & Electrode. Electrode	5.1	86
169	sp ² /sp ³ Framework from Diamond Nanocrystals: A Key Bridge of Carbonaceous Structure to Carbocatalysis. ACS Catalysis, 2019, 9, 7494-7519.	11.2	86
170	Modulating metal–organic frameworks for catalyzing acidic oxygen evolution for proton exchange membrane water electrolysis. SusMat, 2021, 1, 460-481.	14.9	86
171	Electrochemical performance of silver-modified Ba0.5Sr0.5Co0.8Fe0.2O3â^î cathodes prepared via electroless deposition. Electrochimica Acta, 2008, 53, 4370-4380.	5.2	85
172	Synergistically enhanced hydrogen evolution electrocatalysis by <i>in situ</i> exsolution of metallic nanoparticles on perovskites. Journal of Materials Chemistry A, 2018, 6, 13582-13587.	10.3	85
173	Different Effect of the Atmospheres on the Phase Formation and Performance of Li ₄ Ti ₅ O ₁₂ Prepared from Ball-Milling-Assisted Solid-Phase Reaction with Pristine and Carbon-Precoated TiO ₂ as Starting Materials. Journal of Physical Chemistry C, 2011, 115, 4943-4952.	3.1	84
174	A Functionâ€6eparated Design of Electrode for Realizing Highâ€Performance Hybrid Zinc Battery. Advanced Energy Materials, 2020, 10, 2002992.	19.5	84
175	Rich atomic interfaces between sub-1 nm RuOx clusters and porous Co3O4 nanosheets boost oxygen electrocatalysis bifunctionality for advanced Zn-air batteries. Energy Storage Materials, 2020, 32, 20-29.	18.0	84
176	Boosting oxygen reduction/evolution reaction activities with layered perovskite catalysts. Chemical Communications, 2016, 52, 10739-10742.	4.1	83
177	Self-Recovery Chemistry and Cobalt-Catalyzed Electrochemical Deposition of Cathode for Boosting Performance of Aqueous Zinc-Ion Batteries. IScience, 2020, 23, 100943.	4.1	83
178	In situ catalyzed Boudouard reaction of coal char for solid oxide-based carbon fuel cells with improved performance. Applied Energy, 2015, 141, 200-208.	10.1	82
179	High-performance non-enzymatic perovskite sensor for hydrogen peroxide and glucose electrochemical detection. Sensors and Actuators B: Chemical, 2017, 244, 482-491.	7.8	82
180	Gas Humidification Impact on the Properties and Performance of Perovskiteâ€Type Functional Materials in Protonâ€Conducting Solid Oxide Cells. Advanced Functional Materials, 2018, 28, 1802592.	14.9	82

#	Article	IF	CITATIONS
181	Ultrahigh-performance tungsten-doped perovskites for the oxygen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 9854-9859.	10.3	82
182	Cation-Deficient Perovskites for Clean Energy Conversion. Accounts of Materials Research, 2021, 2, 477-488.	11.7	82
183	A new cathode for solid oxide fuel cells capable of in situ electrochemical regeneration. Journal of Materials Chemistry, 2011, 21, 15343.	6.7	81
184	Highly flexible self-standing film electrode composed of mesoporous rutile TiO2/C nanofibers for lithium-ion batteries. Electrochimica Acta, 2012, 85, 636-643.	5.2	81
185	Perovskite materials in energy storage and conversion. Asia-Pacific Journal of Chemical Engineering, 2016, 11, 338-369.	1.5	81
186	Cellulose-assisted combustion synthesis of Li4Ti5O12 adopting anatase TiO2 solid as raw material with high electrochemical performance. Journal of Alloys and Compounds, 2009, 477, 665-672.	5.5	80
187	Fine‶uning Surface Properties of Perovskites via Nanocompositing with Inert Oxide toward Developing Superior Catalysts for Advanced Oxidation. Advanced Functional Materials, 2018, 28, 1804654.	14.9	80
188	Performance of PrBaCo ₂ O _{5+\hat{l}} as a Proton-Conducting Solid-Oxide Fuel Cell Cathode. Journal of Physical Chemistry A, 2010, 114, 3764-3772.	2.5	79
189	Nano La _{0.6} Ca _{0.4} Fe _{0.8} Ni _{0.2} O _{3â^Î} decorated porous doped ceria as a novel cobalt-free electrode for "symmetrical―solid oxide fuel cells. Journal of Materials Chemistry A, 2014, 2, 19526-19535.	10.3	79
190	Mesoporous and Nanostructured TiO ₂ layer with Ultraâ€High Loading on Nitrogenâ€Doped Carbon Foams as Flexible and Freeâ€Standing Electrodes for Lithiumâ€Ion Batteries. Small, 2016, 12, 6724-6734.	10.0	79
191	A New Durable Surface Nanoparticlesâ€Modified Perovskite Cathode for Protonic Ceramic Fuel Cells from Selective Cation Exsolution under Oxidizing Atmosphere. Advanced Materials, 2022, 34, e2106379.	21.0	79
192	Structural, electrical and electrochemical characterizations of SrNb0.1Co0.9O3â^î^as a cathode of solid oxide fuel cells operating below 600°C. International Journal of Hydrogen Energy, 2010, 35, 1356-1366.	7.1	78
193	Novel CO ₂ -tolerant ion-transporting ceramic membranes with an external short circuit for oxygen separation at intermediate temperatures. Energy and Environmental Science, 2012, 5, 5257-5264.	30.8	78
194	Boosting Electrocatalytic Activity of Single Atom Catalysts Supported on Nitrogenâ€Doped Carbon through N Coordination Environment Engineering. Small, 2022, 18, e2105329.	10.0	78
195	Assessment of PrBaCo2O5+ \hat{l} +Sm0.2Ce0.8O1.9 composites prepared by physical mixing as electrodes of solid oxide fuel cells. Journal of Power Sources, 2010, 195, 7187-7195.	7.8	77
196	Li4Ti5O12/Sn composite anodes for lithium-ion batteries: Synthesis and electrochemical performance. Journal of Power Sources, 2010, 195, 8244-8250.	7.8	77
197	Cobalt-free SrNbxFe1â^'xO3â^'Î^ (xÂ=Â0.05, 0.1 and 0.2) perovskite cathodes for intermediate temperature solid oxide fuel cells. Journal of Power Sources, 2015, 298, 209-216.	7.8	77
198	Anode-supported ScSZ-electrolyte SOFC with whole cell materials from combined EDTA–citrate complexing synthesis process. Journal of Power Sources, 2007, 172, 704-712.	7.8	76

#	Article	IF	Citations
199	Realizing Ultrafast Oxygen Evolution by Introducing Proton Acceptor into Perovskites. Advanced Energy Materials, 2019, 9, 1900429.	19.5	76
200	Rational Design of Ruthenium and Cobalt-Based Composites with Rich Metal–Insulator Interfaces for Efficient and Stable Overall Water Splitting in Acidic Electrolyte. ACS Applied Materials & Discrete Property interfaces, 2019, 11, 47894-47903.	8.0	76
201	A 3D porous architecture composed of TiO2 nanotubes connected with a carbon nanofiber matrix for fast energy storage. Journal of Materials Chemistry A, 2013, 1, 12310.	10.3	75
202	Multifunctional Iron Oxide Nanoflake/Graphene Composites Derived from Mechanochemical Synthesis for Enhanced Lithium Storage and Electrocatalysis. ACS Applied Materials & Samp; Interfaces, 2015, 7, 14446-14455.	8.0	75
203	Spherical Ruthenium Disulfide-Sulfur-Doped Graphene Composite as an Efficient Hydrogen Evolution Electrocatalyst. ACS Applied Materials & Samp; Interfaces, 2018, 10, 34098-34107.	8.0	75
204	Emerging two-dimensional nanomaterials for electrochemical nitrogen reduction. Chemical Society Reviews, 2021, 50, 12744-12787.	38.1	75
205	New Undisputed Evidence and Strategy for Enhanced Latticeâ€Oxygen Participation of Perovskite Electrocatalyst through Cation Deficiency Manipulation. Advanced Science, 2022, 9, e2200530.	11.2	75
206	Rational Design of a Waterâ€Storable Hierarchical Architecture Decorated with Amorphous Barium Oxide and Nickel Nanoparticles as a Solid Oxide Fuel Cell Anode with Excellent Sulfur Tolerance. Advanced Science, 2017, 4, 1700337.	11.2	74
207	Recent progress in metal–organic frameworks for lithium–sulfur batteries. Polyhedron, 2018, 155, 464-484.	2.2	74
208	Porous TiO2(B)/anatase microspheres with hierarchical nano and microstructures for high-performance lithium-ion batteries. Electrochimica Acta, 2013, 97, 386-392.	5.2	73
209	Non-aqueous hybrid supercapacitors fabricated with mesoporous TiO2 microspheres and activated carbon electrodes with superior performance. Journal of Power Sources, 2014, 253, 80-89.	7.8	73
210	A comparative study of Sm0.5Sr0.5MO3â^î (MÂ=ÂCo and Mn) as oxygen reduction electrodes for solid oxide fuel cells. International Journal of Hydrogen Energy, 2012, 37, 4377-4387.	7.1	72
211	Toward Enhanced Oxygen Evolution on Perovskite Oxides Synthesized from Different Approaches: A Case Study of Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3â~Î. Electrochimica Acta, 2016, 219, 553-559.	5.2	72
212	Monoclinic SrIrO ₃ : An Easily Synthesized Conductive Perovskite Oxide with Outstanding Performance for Overall Water Splitting in Alkaline Solution. Chemistry of Materials, 2020, 32, 4509-4517.	6.7	72
213	Anode-supported thin-film fuel cells operated in a single chamber configuration 2T-I-12. Solid State lonics, 2004, 175, 39-46.	2.7	71
214	Electric Power and Synthesis Gas Coâ€generation From Methane with Zero Waste Gas Emission. Angewandte Chemie - International Edition, 2011, 50, 1792-1797.	13.8	71
215	High-performance SrNb _{0.1} Co _{0.9â^'x} Fe _x O _{3â^'Î} perovskite cathodes for low-temperature solid oxide fuel cells. Journal of Materials Chemistry A, 2014, 2, 15454-15462.	10.3	71
216	Evaluation and optimization of Bi1â^'xSrxFeO3â^'δ perovskites as cathodes of solid oxide fuel cells. International Journal of Hydrogen Energy, 2011, 36, 3179-3186.	7.1	70

#	Article	IF	Citations
217	From Paper to Paper-like Hierarchical Anatase TiO ₂ Film Electrode for High-Performance Lithium-lon Batteries. Journal of Physical Chemistry C, 2012, 116, 17440-17447.	3.1	70
218	An efficient electrocatalyst as cathode material for solid oxide fuel cells: BaFeO·95SnO·05O3â^'δ. Journal of Power Sources, 2016, 326, 459-465.	7.8	70
219	Integration of Zn–Ag and Zn–Air Batteries: A Hybrid Battery with the Advantages of Both. ACS Applied Materials & Discrete Samp; Interfaces, 2018, 10, 36873-36881.	8.0	70
220	Nanocomposites: A New Opportunity for Developing Highly Active and Durable Bifunctional Air Electrodes for Reversible Protonic Ceramic Cells. Advanced Energy Materials, 2021, 11, 2101899.	19.5	70
221	B-Site Cation-Ordered Double-Perovskite Oxide as an Outstanding Electrode Material for Supercapacitive Energy Storage Based on the Anion Intercalation Mechanism. ACS Applied Materials & Amp; Interfaces, 2018, 10, 9415-9423.	8.0	69
222	Postsynthesis Growth of CoOOH Nanostructure on SrCo _{0.6} Ti _{0.4} O _{3â^î} Perovskite Surface for Enhanced Degradation of Aqueous Organic Contaminants. ACS Sustainable Chemistry and Engineering, 2018, 6, 15737-15748.	6.7	69
223	Water-proof, electrolyte-nonvolatile, and flexible Li-Air batteries via O2-Permeable silica-aerogel-reinforced polydimethylsiloxane external membranes. Energy Storage Materials, 2020, 27, 297-306.	18.0	69
224	Chlorine-anion doping induced multi-factor optimization in perovskties for boosting intrinsic oxygen evolution. Journal of Energy Chemistry, 2021, 52, 115-120.	12.9	69
225	The BaCe $<$ sub $>0.16sub>Y<sub>0.04sub>Fe<sub>0.8sub>O<sub>3â^{\circ}<i>^{\circ}i>^{\circ} left new high-performance cobalt-free triple-conducting cathode for protonic ceramic fuel cells operating at reduced temperatures. Journal of Materials Chemistry A, 2022, 10, 5381-5390.$	10.3	69
226	LSCF Nanopowder from Cellulose–Glycineâ€Nitrate Process and its Application in Intermediateâ€Temperature Solidâ€Oxide Fuel Cells. Journal of the American Ceramic Society, 2008, 91, 1155-1162.	3.8	68
227	Electrospinning based fabrication and performance improvement of film electrodes for lithium-ion batteries composed of TiO2 hollow fibersâ€. Journal of Materials Chemistry, 2011, 21, 15041.	6.7	68
228	Sm0.5Sr0.5CoO3â^î^i-infiltrated cathodes for solid oxide fuel cells with improved oxygen reduction activity and stability. Journal of Power Sources, 2012, 216, 208-215.	7.8	68
229	A Green Route to a Na ₂ FePO ₄ F-Based Cathode for Sodium Ion Batteries of High Rate and Long Cycling Life. ACS Applied Materials & Samp; Interfaces, 2017, 9, 16280-16287.	8.0	68
230	SrCo1â^'xTixO3â^'δ perovskites as excellent catalysts for fast degradation of water contaminants in neutral and alkaline solutions. Scientific Reports, 2017, 7, 44215.	3.3	68
231	Advances in modeling and simulation of Li–air batteries. Progress in Energy and Combustion Science, 2017, 62, 155-189.	31.2	68
232	Promoting the Efficiency and Stability of CsPbIBr ₂ -Based All-Inorganic Perovskite Solar Cells through a Functional Cu ²⁺ Doping Strategy. ACS Applied Materials & Amp; Interfaces, 2020, 12, 23984-23994.	8.0	68
233	Fast operando spectroscopy tracking in situ generation of rich defects in silver nanocrystals for highly selective electrochemical CO2 reduction. Nature Communications, 2021, 12, 660.	12.8	68
234	A novel method to enhance rate performance of an Al-doped Li4Ti5O12 electrode by post-synthesis treatment in liquid formaldehyde at room temperature. Journal of Materials Chemistry, 2012, 22, 8013.	6.7	67

#	Article	IF	CITATIONS
235	Synthesis of well-crystallized Li4Ti5O12 nanoplates for lithium-ion batteries with outstanding rate capability and cycling stability. Journal of Materials Chemistry A, 2013, 1, 13233.	10.3	67
236	Superâ€Exchange Interaction Induced Overall Optimization in Ferromagnetic Perovskite Oxides Enables Ultrafast Water Oxidation. Small, 2019, 15, e1903120.	10.0	67
237	Recent Advances in the Development of Anode Materials for Solid Oxide Fuel Cells Utilizing Liquid Oxygenated Hydrocarbon Fuels: A Mini Review. Energy Technology, 2019, 7, 33-44.	3.8	67
238	Si/C composite lithium-ion battery anodes synthesized from coarse silicon and citric acid through combined ball milling and thermal pyrolysis. Electrochimica Acta, 2010, 55, 3876-3883.	5.2	66
239	Silver-modified Ba0.5Sr0.5Co0.8Fe0.2O3â^'Î' as cathodes for a proton conducting solid-oxide fuel cell. International Journal of Hydrogen Energy, 2010, 35, 8281-8288.	7.1	66
240	Hierarchical CO2-protective shell for highly efficient oxygen reduction reaction. Scientific Reports, 2012, 2, 327.	3.3	66
241	Fast lithium-ion insertion of TiO2 nanotube and graphene composites. Electrochimica Acta, 2013, 88, 847-857.	5.2	66
242	The solid-state chelation synthesis of LiNi _{$1/3$} 0 _{2} as a cathode material for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 10536-10544.	10.3	66
243	Compositional Engineering of Perovskite Oxides for Highly Efficient Oxygen Reduction Reactions. ACS Applied Materials & Diterfaces, 2015, 7, 8562-8571.	8.0	66
244	Cobalt-free polycrystalline Ba0.95La0.05FeO3â^î thin films as cathodes for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2014, 250, 188-195.	7.8	65
245	Pt/C–LiCoO ₂ composites with ultralow Pt loadings as synergistic bifunctional electrocatalysts for oxygen reduction and evolution reactions. Journal of Materials Chemistry A, 2016, 4, 4516-4524.	10.3	65
246	Recent Progress on Structurally Ordered Materials for Electrocatalysis. Advanced Energy Materials, 2021, 11, 2101937.	19.5	65
247	Novel mixed conducting SrSc _{0.05} Co _{0.95} O _{3â€Î} ceramic membrane for oxygen separation. AICHE Journal, 2007, 53, 3116-3124.	3.6	64
248	Influence of M cations on structural, thermal and electrical properties of new oxygen selective membranes based on SrCo0.95M0.05O3â^Î perovskite. Separation and Purification Technology, 2009, 67, 304-311.	7.9	64
249	Direct growth of ordered Nâ€doped carbon nanotube arrays on carbon fiber cloth as a freeâ€standing and binderâ€free air electrode for flexible quasiâ€solidâ€state rechargeable Znâ€Air batteries. , 2020, 2, 461-471.		64
250	Pyrolyzed CoN4-chelate as an electrocatalyst for oxygen reduction reaction in acid media. International Journal of Hydrogen Energy, 2010, 35, 2900-2903.	7.1	63
251	A new neodymium-doped BaZr0.8Y0.2O3â^δas potential electrolyte for proton-conducting solid oxide fuel cells. Journal of Membrane Science, 2012, 415-416, 391-398.	8.2	63
252	Single-atom catalysts for high-efficiency photocatalytic and photoelectrochemical water splitting: distinctive roles, unique fabrication methods and specific design strategies. Journal of Materials Chemistry A, 2022, 10, 6835-6871.	10.3	63

#	Article	IF	Citations
253	Tuning layer-structured La $<$ sub $>0.6<$ /sub $>$ Sr $<$ sub $>1.4<$ /sub $>$ MnO $<$ sub $>4+\hat{l}'<$ /sub $>$ into a promising electrode for intermediate-temperature symmetrical solid oxide fuel cells through surface modification. Journal of Materials Chemistry A, 2016, 4, 10641-10649.	10.3	62
254	Formation of hollow MoS2/carbon microspheres for high capacity and high rate reversible alkali-ion storage. Journal of Materials Chemistry A, 2018, 6, 8280-8288.	10.3	62
255	Boosting the oxygen evolution reaction activity of a perovskite through introducing multi-element synergy and building an ordered structure. Journal of Materials Chemistry A, 2019, 7, 9924-9932.	10.3	62
256	An Aurivillius Oxide Based Cathode with Excellent CO ₂ Tolerance for Intermediateâ€Temperature Solid Oxide Fuel Cells. Angewandte Chemie - International Edition, 2016, 55, 8988-8993.	13.8	61
257	Bâ€Site Cation Ordered Double Perovskites as Efficient and Stable Electrocatalysts for Oxygen Evolution Reaction. Chemistry - A European Journal, 2017, 23, 5722-5728.	3.3	61
258	Selfâ€Assembled Ruddlesden–Popper/Perovskite Hybrid with Latticeâ€Oxygen Activation as a Superior Oxygen Evolution Electrocatalyst. Small, 2020, 16, e2001204.	10.0	61
259	Characterization and evaluation of BaCo0.7Fe0.2Nb0.1O3â~δas a cathode for proton-conducting solid oxide fuel cells. International Journal of Hydrogen Energy, 2012, 37, 484-497.	7.1	59
260	Nickelâ€Based Anode with Water Storage Capability to Mitigate Carbon Deposition for Direct Ethanol Solid Oxide Fuel Cells. ChemSusChem, 2014, 7, 1719-1728.	6.8	59
261	Self-assembled mesoporous TiO2/carbon nanotube composite with a three-dimensional conducting nanonetwork as a high-rate anode material for lithium-ion battery. Journal of Power Sources, 2014, 254, 18-28.	7.8	59
262	Computational and experimental analysis of Ba $<$ sub $>$ 0.95 $<$ /sub $>$ La $<$ sub $>$ 0.05 $<$ /sub $>$ FeO $<$ sub $>$ 3 \hat{a} ° \hat{i} $<$ /sub $>$ as a cathode material for solid oxide fuel cells. Journal of Materials Chemistry A, 2014, 2, 14154-14163.	10.3	59
263	A NiFeCu alloy anode catalyst for direct-methane solid oxide fuel cells. Journal of Power Sources, 2014, 258, 134-141.	7.8	59
264	Hierarchical carbon-coated acanthosphere-like Li4Ti5O12 microspheres for high-power lithium-ion batteries. Journal of Power Sources, 2016, 314, 18-27.	7.8	59
265	Evaluation of SrSc0.175Nb0.025Co0.8O3- \hat{l} perovskite as a cathode for proton-conducting solid oxide fuel cells: The possibility of in situ creating protonic conductivity and electrochemical performance. Electrochimica Acta, 2018, 259, 559-565.	5.2	59
266	Superstructures with Atomic-Level Arranged Perovskite and Oxide Layers for Advanced Oxidation with an Enhanced Non-Free Radical Pathway. ACS Sustainable Chemistry and Engineering, 2022, 10, 1899-1909.	6.7	59
267	A new Gd-promoted nickel catalyst for methane conversion to syngas and as an anode functional layer in a solid oxide fuel cell. Journal of Power Sources, 2011, 196, 3855-3862.	7.8	58
268	Combustion-derived nanocrystalline LiMn2O4 as a promising cathode material for lithium-ion batteries. Journal of Power Sources, 2015, 275, 38-44.	7.8	58
269	In situ fabrication of (Sr,La)FeO ₄ with CoFe alloy nanoparticles as an independent catalyst layer for direct methane-based solid oxide fuel cells with a nickel cermet anode. Journal of Materials Chemistry A, 2016, 4, 13997-14007.	10.3	58
270	Interconnected graphene nanosheets with confined FeS2/FeS binary nanoparticles as anode material of sodium-ion batteries. Chemical Engineering Journal, 2019, 378, 122168.	12.7	58

#	Article	IF	Citations
271	Boosting oxygen evolution reaction by activation of latticeâ€oxygen sites in layered Ruddlesdenâ€Popper oxide. EcoMat, 2020, 2, e12021.	11.9	58
272	A mechanism study of synthesis of Li4Ti5O12 from TiO2 anatase. Journal of Alloys and Compounds, 2010, 505, 367-373.	5. 5	57
273	H2S poisoning effect and ways to improve sulfur tolerance of nickel cermet anodes operating on carbonaceous fuels. Applied Energy, 2016, 179, 765-777.	10.1	57
274	Recent advances in single-chamber fuel-cells: Experiment and modeling. Solid State Ionics, 2006, 177, 2013-2021.	2.7	56
275	Evaluation of Ba0.6Sr0.4Co0.9Nb0.1O3â~δ mixed conductor as a cathode for intermediate-temperature oxygen-ionic solid-oxide fuel cells. Journal of Power Sources, 2010, 195, 5176-5184.	7.8	56
276	Perovskite oxide/carbon nanotube hybrid bifunctional electrocatalysts for overall water splitting. Electrochimica Acta, 2018, 286, 47-54.	5.2	56
277	Effect of milling method and time on the properties and electrochemical performance of LiFePO4/C composites prepared by ball milling and thermal treatment. Electrochimica Acta, 2010, 55, 2653-2661.	5.2	55
278	Amorphous V–O–C composite nanofibers electrospun from solution precursors as binder- and conductive additive-free electrodes for supercapacitors with outstanding performance. Nanoscale, 2013, 5, 12589.	5.6	55
279	Optimizing the modification method of zinc-enhanced sintering of BaZr0.4Ce0.4Y0.2O3â^î-based electrolytes for application in an anode-supported protonic solid oxide fuel cell. International Journal of Hydrogen Energy, 2010, 35, 5611-5620.	7.1	54
280	Solution combustion synthesis of high-rate performance carbon-coated lithium iron phosphate from inexpensive iron (<scp>iii</scp>) raw material. Journal of Materials Chemistry, 2012, 22, 2900-2907.	6.7	54
281	Impregnated LaCo0.3Fe0.67Pd0.03O3-δas a promising electrocatalyst for "symmetrical― intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2016, 306, 92-99.	7.8	54
282	New Ba0.5Sr0.5Co0.8Fe0.2O3â^îδ+Co3O4 composite electrode for IT-SOFCs with improved electrical conductivity and catalytic activity. Electrochemistry Communications, 2011, 13, 197-199.	4.7	53
283	Stable and easily sintered BaCe0.5Zr0.3Y0.2O3â^'î^ electrolytes using ZnO and Na2CO3 additives for protonic oxide fuel cells. Electrochimica Acta, 2013, 95, 95-101.	5.2	53
284	Tin-doped perovskite mixed conducting membrane for efficient air separation. Journal of Materials Chemistry A, 2014, 2, 9666-9674.	10.3	53
285	Novel Approach for Developing Dual-Phase Ceramic Membranes for Oxygen Separation through Beneficial Phase Reaction. ACS Applied Materials & Samp; Interfaces, 2015, 7, 22918-22926.	8.0	53
286	Surfactant-free self-assembly of reduced graphite oxide-MoO2 nanobelt composites used as electrode for lithium-ion batteries. Electrochimica Acta, 2016, 211, 972-981.	5.2	53
287	A strongly coupled CoS2/ reduced graphene oxide nanostructure as an anode material for efficient sodium-ion batteries. Journal of Alloys and Compounds, 2017, 726, 394-402.	5.5	53
288	Earthâ∈Abundant Silicon for Facilitating Water Oxidation over Ironâ∈Based Perovskite Electrocatalyst. Advanced Materials Interfaces, 2018, 5, 1701693.	3.7	53

#	Article	IF	Citations
289	Ruddlesden–Popper Perovskite Oxides for Photocatalysis-Based Water Splitting and Wastewater Treatment. Energy & Description (2020), 34, 9208-9221.	5.1	53
290	Infiltrated NiCo Alloy Nanoparticle Decorated Perovskite Oxide: A Highly Active, Stable, and Antisintering Anode for Directâ€Ammonia Solid Oxide Fuel Cells. Small, 2020, 16, e2001859.	10.0	53
291	A smart lithiophilic polymer filler in gel polymer electrolyte enables stable and dendrite-free Li metal anode. Journal of Materials Chemistry A, 2020, 8, 9733-9742.	10.3	53
292	A New Pd Doped Proton Conducting Perovskite Oxide with Multiple Functionalities for Efficient and Stable Power Generation from Ammonia at Reduced Temperatures. Advanced Energy Materials, 2021, 11, 2003916.	19.5	53
293	Methane-fueled SOFC with traditional nickel-based anode by applying Ni/Al2O3 as a dual-functional layer. Electrochemistry Communications, 2009, 11, 194-197.	4.7	52
294	Phase Transition of a Cobaltâ€Free Perovskite as a Highâ€Performance Cathode for Intermediateâ€Temperature Solid Oxide Fuel Cells. ChemSusChem, 2012, 5, 2023-2031.	6.8	52
295	Structure, sinterability, chemical stability and conductivity of proton-conducting BaZr0.6M0.2Y0.2O3â~δelectrolyte membranes: The effect of the M dopant. Journal of Membrane Science, 2014, 467, 100-108.	8.2	52
296	Interweaved Si@C/CNTs&CNFs composites as anode materials for Li-ion batteries. Journal of Alloys and Compounds, 2014, 588, 206-211.	5.5	52
297	Emerging Strategies for Developing High-Performance Perovskite-Based Materials for Electrochemical Water Splitting. Energy & Samp; Fuels, 2020, 34, 10547-10567.	5.1	52
298	High-performance metal-organic framework-perovskite hybrid as an important component of the air-electrode for rechargeable Zn-Air battery. Journal of Power Sources, 2020, 468, 228377.	7.8	52
299	A Porous Nano-Micro-Composite as a High-Performance Bi-Functional Air Electrode with Remarkable Stability for Rechargeable Zinc–Air Batteries. Nano-Micro Letters, 2020, 12, 130.	27.0	52
300	Anchoring perovskite LaMnO3 nanoparticles on biomassâ´derived N, P coâ´doped porous carbon for efficient oxygen reduction. Electrochimica Acta, 2018, 274, 40-48.	5.2	51
301	In situ formation of a 3D core-shell and triple-conducting oxygen reduction reaction electrode for proton-conducting SOFCs. Journal of Power Sources, 2018, 385, 76-83.	7.8	51
302	Realizing fourfold enhancement in conductivity of perovskite Li0.33La0.557TiO3 electrolyte membrane via a Sr and Ta co-doping strategy. Journal of Membrane Science, 2019, 582, 194-202.	8.2	51
303	Toward a new generation of low cost, efficient, and durable metal–air flow batteries. Journal of Materials Chemistry A, 2019, 7, 26744-26768.	10.3	51
304	A high-performance no-chamber fuel cell operated on ethanol flame. Journal of Power Sources, 2008, 177, 33-39.	7.8	50
305	Lithium and lanthanum promoted Ni-Al2O3 as an active and highly coking resistant catalyst layer for solid-oxide fuel cells operating on methane. Journal of Power Sources, 2011, 196, 90-97.	7.8	50
306	Nanoscaled Sm-doped CeO2 buffer layers for intermediate-temperature solid oxide fuel cells. Electrochemistry Communications, 2013, 35, 131-134.	4.7	50

#	Article	IF	CITATIONS
307	Pyrite-type ruthenium disulfide with tunable disorder and defects enables ultra-efficient overall water splitting. Journal of Materials Chemistry A, 2019, 7, 14222-14232.	10.3	50
308	BaCo _{0.6} Fe _{0.3} Sn _{0.1} O _{3â^î´} perovskite as a new superior oxygen reduction electrode for intermediate-to-low temperature solid oxide fuel cells. Journal of Materials Chemistry A, 2014, 2, 15078.	10.3	49
309	An "electronegative―bifunctional coating layer: simultaneous regulation of polysulfide and Li-ion adsorption sites for long-cycling and "dendrite-free―Li–S batteries. Journal of Materials Chemistry A, 2019, 7, 22463-22474.	10.3	49
310	Bridging the Charge Accumulation and High Reaction Order for Highâ∈Rate Oxygen Evolution and Long Stable Znâ∈Air Batteries. Advanced Functional Materials, 2022, 32, .	14.9	49
311	A novel approach for substantially improving the sinterability of BaZr0.4Ce0.4Y0.2O3â^Î electrolyte for fuel cells by impregnating the green membrane with zinc nitrate as a sintering aid. Journal of Membrane Science, 2013, 437, 189-195.	8.2	48
312	Perovskite SrCo _{0.9} Nb _{0.1} O _{3â^³<i>Î</i>} as an Anionâ€Intercalated Electrode Material for Supercapacitors with Ultrahigh Volumetric Energy Density. Angewandte Chemie, 2016, 128, 9728-9731.	2.0	48
313	3D ordered macroporous SmCoO3 perovskite for highly active and selective hydrogen peroxide detection. Electrochimica Acta, 2018, 260, 372-383.	5.2	48
314	Fuel cells that operate at 300° to 500°C. Science, 2020, 369, 138-139.	12.6	48
315	Oxygen selective membranes based on B-site cation-deficient (Ba0.5Sr0.5)(Co0.8Fe0.2)yO3â^î^perovskite with improved operational stability. Journal of Membrane Science, 2008, 318, 182-190.	8.2	47
316	Fabrication and performance test of a catalyst-coated membrane from direct spray deposition. Solid State Ionics, 2008, 179, 960-965.	2.7	47
317	Influence of high-energy ball milling of precursor on the morphology and electrochemical performance of Li4Ti5O12–ball-milling time. Solid State Ionics, 2008, 179, 946-950.	2.7	47
318	Synthesis of lithium insertion material Li4Ti5O12 from rutile TiO2 via surface activation. Journal of Power Sources, 2010, 195, 2883-2887.	7.8	47
319	Effect of Ba nonstoichiometry on the phase structure, sintering, electrical conductivity and phase stability of Ba1±xCe0.4Zr0.4Y0.2O3â^Î (0≤≩.20) proton conductors. International Journal of Hydrogen Energy, 2011, 36, 8450-8460.	7.1	47
320	Carbon nanotube and graphene nanosheet co-modified LiFePO4 nanoplate composite cathode material by a facile polyol process. Applied Surface Science, 2013, 283, 999-1005.	6.1	47
321	Cobalt-free SrFe0.9Ti0.1O3 $\hat{a}^{\hat{i}}$ as a high-performance electrode material for oxygen reduction reaction on doped ceria electrolyte with favorable CO2 tolerance. Journal of the European Ceramic Society, 2015, 35, 2531-2539.	5.7	47
322	Cobalt-free Ba0.5Sr0.5Fe0.8Cu0.1Ti0.1O3â^Î as a bi-functional electrode material for solid oxide fuel cells. Journal of Power Sources, 2015, 298, 184-192.	7.8	47
323	Understanding the doping effect toward the design of CO2-tolerant perovskite membranes with enhanced oxygen permeability. Journal of Membrane Science, 2016, 519, 11-21.	8.2	47
324	A CO ₂ -tolerant SrCo _{0.8} Fe _{0.15} Zr _{0.05} O _{3$\hat{a}^{\hat{l}}$} cathode for proton-conducting solid oxide fuel cells. Journal of Materials Chemistry A, 2020, 8, 11292-11301.	10.3	47

#	Article	IF	CITATIONS
325	Coking-free direct-methanol-flame fuel cell with traditional nickel–cermet anode. International Journal of Hydrogen Energy, 2010, 35, 7971-7981.	7.1	46
326	Development of a Ni–Ce0.8Zr0.2O2 catalyst for solid oxide fuel cells operating on ethanol through internal reforming. Journal of Power Sources, 2011, 196, 6177-6185.	7.8	46
327	A polyaniline-coated mechanochemically synthesized tin oxide/graphene nanocomposite for high-power and high-energy lithium-ion batteries. Journal of Power Sources, 2015, 290, 61-70.	7.8	46
328	Efficient and CO2-tolerant oxygen transport membranes prepared from high-valence B-site substituted cobalt-free SrFeO3â^î. Journal of Membrane Science, 2015, 495, 187-197.	8.2	46
329	Enhanced electrochemical performance, water storage capability and coking resistance of a Ni+BaZr0.1Ce0.7Y0.1Yb0.1O3â^' anode for solid oxide fuel cells operating on ethanol. Chemical Engineering Science, 2015, 126, 22-31.	3.8	46
330	Ultralong Cycle Life Li–O ₂ Battery Enabled by a MOF-Derived Ruthenium–Carbon Composite Catalyst with a Durable Regenerative Surface. ACS Applied Materials & Samp; Interfaces, 2019, 11, 20091-20097.	8.0	46
331	From scheelite BaMoO4 to perovskite BaMoO3: Enhanced electrocatalysis toward the hydrogen evolution in alkaline media. Composites Part B: Engineering, 2020, 198, 108214.	12.0	46
332	Nickel catalyst prepared via glycine nitrate process for partial oxidation of methane to syngas. Catalysis Communications, 2008, 9, 1418-1425.	3.3	45
333	3D non-precious metal-based electrocatalysts for the oxygen reduction reaction in acid media. International Journal of Hydrogen Energy, 2010, 35, 8295-8302.	7.1	45
334	A hydrophobic polymer stabilized p-Cu ₂ O nanocrystal photocathode for highly efficient solar water splitting. Journal of Materials Chemistry A, 2019, 7, 15593-15598.	10.3	45
335	Selfâ€catalyzed formation of strongly interconnected multiphase molybdenumâ€based composites for efficient hydrogen evolution. , 2022, 4, 77-87.		45
336	Synthesis and assessment of La0.8Sr0.2ScyMn1â^'yO3â^'Î' as cathodes for solid-oxide fuel cells on scandium-stabilized zirconia electrolyte. Journal of Power Sources, 2008, 183, 471-478.	7.8	44
337	Performance of SrSc0.2Co0.8O3â^î^+Sm0.5Sr0.5CoO3â^î mixed-conducting composite electrodes for oxygen reduction at intermediate temperatures. International Journal of Hydrogen Energy, 2009, 34, 9496-9504.	7.1	44
338	Role of silver current collector on the operational stability of selected cobalt-containing oxide electrodes for oxygen reduction reaction. Journal of Power Sources, 2012, 210, 146-153.	7.8	44
339	Thermal inkjet printing of thin-film electrolytes and buffering layers for solid oxide fuel cells with improved performance. International Journal of Hydrogen Energy, 2013, 38, 9310-9319.	7.1	44
340	3D core–shell architecture from infiltration and beneficial reactive sintering as highly efficient and thermally stable oxygen reduction electrode. Journal of Materials Chemistry A, 2014, 2, 1284-1293.	10.3	44
341	A top-down strategy for the synthesis of mesoporous Ba0.5Sr0.5Co0.8Fe0.2O3â´´ as a cathode precursor for buffer layer-free deposition on stabilized zirconia electrolyte with a superior electrochemical performance. Journal of Power Sources, 2015, 274, 1024-1033.	7.8	44
342	Efficient Wastewater Remediation Enabled by Self-Assembled Perovskite Oxide Heterostructures with Multiple Reaction Pathways. ACS Sustainable Chemistry and Engineering, 2020, 8, 6033-6042.	6.7	44

#	Article	IF	Citations
343	Rational Design of Superior Electrocatalysts for Water Oxidation: Crystalline or Amorphous Structure?. Small Science, 2021, 1, 2100030.	9.9	44
344	Tailoring charge and mass transport in cation/anion-codoped Ni3N / N-doped CNT integrated electrode toward rapid oxygen evolution for fast-charging zinc-air batteries. Energy Storage Materials, 2021, 39, 11-20.	18.0	44
345	Further performance improvement of Ba0.5Sr0.5Co0.8Fe0.2O3â~δ perovskite membranes for air separation. Ceramics International, 2009, 35, 2455-2461.	4.8	43
346	A comprehensive evaluation of a Ni–Al2O3 catalyst as a functional layer of solid-oxide fuel cell anode. Journal of Power Sources, 2010, 195, 402-411.	7.8	43
347	Assessment of nickel cermets and La0.8Sr0.2Sc0.2Mn0.8O3 as solid-oxide fuel cell anodes operating on carbon monoxide fuel. Journal of Power Sources, 2010, 195, 1333-1343.	7.8	43
348	Aluminum oxide as a dual-functional modifier of Ni-based anodes of solid oxide fuel cells for operation on simulated biogas. Journal of Power Sources, 2014, 268, 787-793.	7.8	43
349	General Regulation of Air Flow Distribution Characteristics within Planar Solid Oxide Fuel Cell Stacks. ACS Energy Letters, 2017, 2, 319-326.	17.4	43
350	A single-/double-perovskite composite with an overwhelming single-perovskite phase for the oxygen reduction reaction at intermediate temperatures. Journal of Materials Chemistry A, 2017, 5, 24842-24849.	10.3	43
351	CoFe nanoalloy particles encapsulated in nitrogen-doped carbon layers as bifunctional oxygen catalyst derived from a Prussian blue analogue. Journal of Alloys and Compounds, 2018, 740, 743-753.	5.5	43
352	A self-adhesive graphene nanoscroll/nanosheet paper with confined Fe1â^'xS/Fe3O4 hetero-nanoparticles for high-performance anode material of flexible Li-ion batteries. Chemical Engineering Journal, 2019, 370, 536-546.	12.7	43
353	Facile single-step ammonia heat-treatment and quenching process for the synthesis of improved Pt/N-graphene catalysts. Applied Surface Science, 2013, 266, 433-439.	6.1	42
354	Cobalt-free niobium-doped barium ferrite as potential materials of dense ceramic membranes for oxygen separation. Journal of Membrane Science, 2014, 455, 75-82.	8.2	42
355	Self-adhesive Co3O4/expanded graphite paper as high-performance flexible anode for Li-ion batteries. Carbon, 2015, 95, 494-496.	10.3	42
356	Highly Active Carbon/αâ€MnO ₂ Hybrid Oxygen Reduction Reaction Electrocatalysts. ChemElectroChem, 2016, 3, 1760-1767.	3.4	42
357	Electrochemical performance and effect of moisture on Ba0.5Sr0.5Sc0.175Nb0.025Co0.8O3-δ oxide as a promising electrode for proton-conducting solid oxide fuel cells. Applied Energy, 2019, 238, 344-350.	10.1	42
358	Rational design of strontium antimony co-doped Li7La3Zr2O12 electrolyte membrane for solid-state lithium batteries. Journal of Alloys and Compounds, 2019, 794, 347-357.	5.5	42
359	Understanding and Engineering of Multiphase Transport Processes in Membrane Electrode Assembly of Proton-Exchange Membrane Fuel Cells with a Focus on the Cathode Catalyst Layer: A Review. Energy & & Review. Fruels, 2020, 34, 9175-9188.	5.1	42
360	Structurally modified coal char as a fuel for solid oxide-based carbon fuel cells with improved performance. Journal of Power Sources, 2015, 288, 106-114.	7.8	41

#	Article	IF	Citations
361	Influence of crystal structure on the electrochemical performance of A-site-deficient Sr _{1â^'s} Nb _{0.1} Co _{0.9} O _{3â^'Î} perovskite cathodes. RSC Advances, 2014, 4, 40865-40872.	3.6	40
362	A Carbon–Air Battery for High Power Generation. Angewandte Chemie - International Edition, 2015, 54, 3722-3725.	13.8	40
363	Nitrogen-doped TiO ₂ microspheres with hierarchical micro/nanostructures and rich dual-phase junctions for enhanced photocatalytic activity. RSC Advances, 2016, 6, 40923-40931.	3.6	40
364	High-Performance Proton-Conducting Fuel Cell with B-Site-Deficient Perovskites for All Cell Components. Energy & Samp; Fuels, 2020, 34, 11464-11471.	5.1	40
365	A Selfâ€Assembled Hetero‧tructured Inverse‧pinel and Antiâ€Perovskite Nanocomposite for Ultrafast Water Oxidation. Small, 2020, 16, e2002089.	10.0	40
366	Unlocking the Potential of Mechanochemical Coupling: Boosting the Oxygen Evolution Reaction by Mating Proton Acceptors with Electron Donors. Advanced Functional Materials, 2021, 31, 2008077.	14.9	40
367	Porous Structure Engineering of Iridium Oxide Nanoclusters on Atomic Scale for Efficient pHâ€Universal Overall Water Splitting. Small, 2021, 17, e2100121.	10.0	40
368	Renewable acetic acid in combination with solid oxide fuel cells for sustainable clean electric power generation. Journal of Materials Chemistry A, 2013, 1, 5620.	10.3	39
369	Molybdenum and Niobium Codoped B-Site-Ordered Double Perovskite Catalyst for Efficient Oxygen Evolution Reaction. ACS Applied Materials & Samp; Interfaces, 2018, 10, 16939-16942.	8.0	39
370	Morphology, crystal structure and electronic state one-step co-tuning strategy towards developing superior perovskite electrocatalysts for water oxidation. Journal of Materials Chemistry A, 2019, 7, 19228-19233.	10.3	39
371	Facile autocombustion synthesis of La0.6Sr0.4Co0.2Fe0.8O3â^δ (LSCF) perovskite via a modified complexing sol–gel process with NH4NO3 as combustion aid. Journal of Alloys and Compounds, 2008, 450, 338-347.	5.5	38
372	Coke formation and performance of an intermediate-temperature solid oxide fuel cell operating on dimethyl ether fuel. Journal of Power Sources, 2011, 196, 1967-1974.	7.8	38
373	Combustion-synthesized Ru–Al2O3 composites as anode catalyst layer of a solid oxide fuel cell operating on methane. International Journal of Hydrogen Energy, 2011, 36, 755-764.	7.1	38
374	Facile Strategy to Low-Cost Synthesis of Hierarchically Porous, Active Carbon of High Graphitization for Energy Storage. ACS Applied Materials & Energy Storage.	8.0	38
375	Interfacial La Diffusion in the CeO ₂ /LaFeO ₃ Hybrid for Enhanced Oxygen Evolution Activity. ACS Applied Materials & Samp; Interfaces, 2021, 13, 2799-2806.	8.0	38
376	Building Ruddlesden–Popper and Single Perovskite Nanocomposites: A New Strategy to Develop Highâ€Performance Cathode for Protonic Ceramic Fuel Cells. Small, 2021, 17, e2101872.	10.0	38
377	Ethanol Steam Reforming over Pt Catalysts Supported on Ce _{<i>x</i>} Zr _{1â^'<i>x</i>} O ₂ Prepared via a Glycine Nitrate Process. Energy & Description of the Company of the Com	5.1	37
378	Morphology-dependent performance of Zn ₂ GeO ₄ as a high-performance anode material for rechargeable lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 15274-15279.	10.3	37

#	Article	IF	CITATIONS
379	Controlled deposition and utilization of carbon on Ni-YSZ anodes of SOFCs operating on dry methane. Energy, 2016, 113, 432-443.	8.8	37
380	Synthesis of Hierarchical TiO ₂ –C ₃ N ₄ Hybrid Microspheres with Enhanced Photocatalytic and Photovoltaic Activities by Maximizing the Synergistic Effect. ChemPhotoChem, 2017, 1, 35-45.	3.0	37
381	Multi-active sites derived from a single/double perovskite hybrid for highly efficient water oxidation. Electrochimica Acta, 2019, 299, 926-932.	5.2	37
382	Advances in Ceramic Thin Films Fabricated by Pulsed Laser Deposition for Intermediate-Temperature Solid Oxide Fuel Cells. Energy & Solid Oxide Fuel Cells.	5.1	37
383	A Highly Ordered Hydrophilic–Hydrophobic Janus Biâ€Functional Layer with Ultralow Pt Loading and Fast Gas/Water Transport for Fuel Cells. Energy and Environmental Materials, 2021, 4, 126-133.	12.8	37
384	Perovskite Oxides in Catalytic Combustion of Volatile Organic Compounds: Recent Advances and Future Prospects. Energy and Environmental Materials, 2022, 5, 751-776.	12.8	37
385	Ballmilling-Assisted Synthesis and Electrochemical Performance of LiFePO[sub 4]/C for Lithium-Ion Battery Adopting Citric Acid as Carbon Precursor. Journal of the Electrochemical Society, 2009, 156, A802.	2.9	36
386	A new nickel–ceria composite for direct-methane solid oxide fuel cells. International Journal of Hydrogen Energy, 2013, 38, 3741-3749.	7.1	36
387	Li4Ti5O12 electrodes operated under hurdle conditions and SiO2 incorporation effect. Journal of Power Sources, 2013, 238, 356-365.	7.8	36
388	A cobalt and nickel co-modified layered P2-Na2/3Mn1/2Fe1/2O2 with excellent cycle stability for high-energy density sodium-ion batteries. Journal of Alloys and Compounds, 2019, 775, 383-392.	5.5	36
389	Efficient Water Splitting Actualized through an Electrochemistryâ€Induced Heteroâ€Structured Antiperovskite/(Oxy)Hydroxide Hybrid. Small, 2020, 16, e2006800.	10.0	36
390	Water-stable MOFs-based core-shell nanostructures for advanced oxidation towards environmental remediation. Composites Part B: Engineering, 2020, 192, 107985.	12.0	36
391	Self-Supported Nickel Phosphide Electrode for Efficient Alkaline Water-to-Hydrogen Conversion via Urea Electrolysis. Industrial & Engineering Chemistry Research, 2021, 60, 1185-1193.	3.7	36
392	Exceptionally Robust Faceâ€Sharing Motifs Enable Efficient and Durable Water Oxidation. Advanced Materials, 2021, 33, e2103392.	21.0	36
393	Covalent Organic Framework (COF)â€Based Hybrids for Electrocatalysis: Recent Advances and Perspectives. Small Methods, 2021, 5, e2100945.	8.6	36
394	Rational design of ZnO-zeolite imidazole hybrid nanoparticles with reduced charge recombination for enhanced photocatalysis. Journal of Colloid and Interface Science, 2022, 614, 538-546.	9.4	36
395	Initialization of a methane-fueled single-chamber solid-oxide fuel cell with NiO+SDC anode and BSCF+SDC cathode. Journal of Power Sources, 2008, 179, 640-648.	7.8	35
396	Fabrication of an anode-supported yttria-stabilized zirconia thin film for solid-oxide fuel cells via wet powder spraying. Journal of Power Sources, 2008, 184, 229-237.	7.8	35

#	Article	IF	Citations
397	Fabrication and evolution of catalyst-coated membranes by direct spray deposition of catalyst ink onto Nafion membrane at high temperature. International Journal of Hydrogen Energy, 2010, 35, 2921-2925.	7.1	35
398	Catalytic decomposition of hydrous hydrazine to hydrogen over oxide catalysts at ambient conditions for PEMFCs. International Journal of Hydrogen Energy, 2012, 37, 1133-1139.	7.1	35
399	Electrocatalytic oxidation of methanol on Pt catalyst supported on nitrogen-doped graphene induced by hydrazine reduction. Journal of Physics and Chemistry of Solids, 2013, 74, 1608-1614.	4.0	35
400	Multi scale and physics models for intermediate and low temperatures H+-solid oxide fuel cells with H+/eâ^²/O2â^² mixed conducting properties: Part A, generalized percolation theory for LSCF-SDC-BZCY 3-component cathodes. Journal of Power Sources, 2016, 303, 305-316.	7.8	35
401	Co-generation of electricity and syngas on proton-conducting solid oxide fuel cell with a perovskite layer as a precursor of a highly efficient reforming catalyst. Journal of Power Sources, 2017, 348, 9-15.	7.8	35
402	LiNi0.29Co0.33Mn0.38O2 polyhedrons with reduced cation mixing as a high-performance cathode material for Li-ion batteries synthesized via a combined co-precipitation and molten salt heating technique. Journal of Alloys and Compounds, 2017, 691, 206-214.	5 . 5	35
403	Nanoporous NiO/Ni(OH) ₂ Plates Incorporated with Carbon Nanotubes as Active Materials of Rechargeable Hybrid Zinc Batteries for Improved Energy Efficiency and High-Rate Capability. Journal of the Electrochemical Society, 2018, 165, A2119-A2126.	2.9	35
404	Enhancing the triiodide reduction activity of a perovskite-based electrocatalyst for dye-sensitized solar cells through exsolved silver nanoparticles. Journal of Materials Chemistry A, 2019, 7, 17489-17497.	10.3	35
405	Metal-free carbon based air electrodes for Zn-air batteries: Recent advances and perspective. Materials Research Bulletin, 2021, 140, 111315.	5.2	35
406	A dense oxygen separation membrane with a layered morphologic structure. Journal of Membrane Science, 2007, 300, 182-190.	8.2	34
407	High performance electrode for electrochemical oxygen generator cell based on solid electrolyte ion transport membrane. Electrochimica Acta, 2007, 52, 6297-6303.	5.2	34
408	Physically mixed LiLaNi–Al2O3 and copper as conductive anode catalysts in a solid oxide fuel cell for methane internal reforming and partial oxidation. International Journal of Hydrogen Energy, 2011, 36, 5632-5643.	7.1	34
409	A new symmetric solid oxide fuel cell with a samaria-doped ceria framework and a silver-infiltrated electrocatalyst. Journal of Power Sources, 2012, 197, 57-64.	7.8	34
410	Composition and microstructure optimization and operation stability of barium deficient Ba1â^'xCo0.7Fe0.2Nb0.1O3â^'Î' perovskite oxide electrodes. Electrochimica Acta, 2013, 103, 23-31.	5.2	34
411	High performance porous iron oxide-carbon nanotube nanocomposite as an anode material for lithium-ion batteries. Electrochimica Acta, 2016, 212, 179-186.	5.2	34
412	Anodes for Carbonâ€Fueled Solid Oxide Fuel Cells. ChemElectroChem, 2016, 3, 193-203.	3.4	34
413	Nickelâ€Iron Alloy Nanoparticleâ€Decorated K ₂ NiF ₄ â€Type Oxide as an Efficient and Sulfurâ€Tolerant Anode for Solid Oxide Fuel Cells. ChemElectroChem, 2017, 4, 2378-2384.	3.4	34
414	Adsorption-based synthesis of Co 3 O 4 $\!\!\!/\!\!\!/ C$ composite anode for high performance lithium-ion batteries. Energy, 2017, 125, 569-575.	8.8	34

#	Article	IF	CITATIONS
415	Hierarchical Porous Yolk–Shell Carbon Nanosphere for Highâ€Performance Lithium–Sulfur Batteries. Particle and Particle Systems Characterization, 2017, 34, 1600281.	2.3	34
416	Highly Active and Stable Cobalt-Free Hafnium-doped SrFe _{0.9} Hf _{0.1} O _{3â^Î(} Perovskite Cathode for Solid Oxide Fuel Cells. ACS Applied Energy Materials, 2018, 1, 2134-2142.	5.1	34
417	New Phosphorusâ€Doped Perovskite Oxide as an Oxygen Reduction Reaction Electrocatalyst in an Alkaline Solution. Chemistry - A European Journal, 2018, 24, 6950-6957.	3.3	34
418	Optimal synthesis and new understanding of P2-type Na2/3Mn1/2Fe1/4Co1/4O2 as an advanced cathode material in sodium-ion batteries with improved cycle stability. Ceramics International, 2018, 44, 5184-5192.	4.8	34
419	A highly sensitive perovskite oxide sensor for detection of p-phenylenediamine in hair dyes. Journal of Hazardous Materials, 2019, 369, 699-706.	12.4	34
420	Activation-free supercapacitor electrode based on surface-modified Sr2CoMo1-xNixO6-δ perovskite. Chemical Engineering Journal, 2020, 390, 124645.	12.7	34
421	First investigation of additive engineering for highly efficient Cs2AgBiBr6-based lead-free inorganic perovskite solar cells. Applied Physics Reviews, 2021, 8, .	11.3	34
422	High Selectivity Electrocatalysts for Oxygen Evolution Reaction and Anti-Chlorine Corrosion Strategies in Seawater Splitting. Catalysts, 2022, 12, 261.	3 . 5	34
423	Effect of firing temperature on the microstructure and performance of PrBaCo2O5+l´ cathodes on Sm0.2Ce0.8O1.9 electrolytes fabricated by spray deposition-firing processes. Journal of Power Sources, 2010, 195, 4667-4675.	7.8	33
424	The influence of impurity ions on the permeation and oxygen reduction properties of Ba0.5Sr0.5Co0.8Fe0.2O3â~δ perovskite. Journal of Membrane Science, 2014, 449, 86-96.	8.2	33
425	Ceramic Lithium Ion Conductor to Solve the Anode Coking Problem of Practical Solid Oxide Fuel Cells. ChemSusChem, 2015, 8, 2978-2986.	6.8	33
426	Smart Control of Composition for Double Perovskite Electrocatalysts toward Enhanced Oxygen Evolution Reaction. ChemSusChem, 2019, 12, 5111-5116.	6.8	33
427	Methane-fueled IT-SOFCs with facile in situ inorganic templating synthesized mesoporous Sm0.2Ce0.8O1.9 as catalytic layer. Journal of Power Sources, 2007, 170, 251-258.	7.8	32
428	Preparation and re-examination of Li4Ti4.85Al0.15O12 as anode material of lithium-ion battery. International Journal of Energy Research, 2011, 35, 68-77.	4.5	32
429	Wet powder spraying fabrication and performance optimization of IT-SOFCs with thin-film ScSZ electrolyte. International Journal of Hydrogen Energy, 2012, 37, 1125-1132.	7.1	32
430	3D amorphous carbon and graphene co-modified LiFePO4 composite derived from polyol process as electrode for high power lithium-ion batteries. Journal of Energy Chemistry, 2014, 23, 363-375.	12.9	32
431	Novel cathode-supported hollow fibers for light weight micro-tubular solid oxide fuel cells with an active cathode functional layer. Journal of Materials Chemistry A, 2015, 3, 1017-1022.	10.3	32
432	Green fabrication of composite cathode with attractive performance for solid oxide fuel cells through facile inkjet printing. Journal of Power Sources, 2015, 273, 465-471.	7.8	32

#	Article	IF	Citations
433	Micro-/nano-structured hybrid of exfoliated graphite and Co 3 O 4 nanoparticles as high-performance anode material for Li-ion batteries. Electrochimica Acta, 2016, 213, 98-106.	5.2	32
434	Improved performance of a symmetrical solid oxide fuel cell by swapping the roles of doped ceria and La $0.6Sr1.4MnO4+\hat{l}'$ in the electrode. Journal of Power Sources, 2017, 342, 644-651.	7.8	32
435	Exsolved Alloy Nanoparticles Decorated Ruddlesden–Popper Perovskite as Sulfur-Tolerant Anodes for Solid Oxide Fuel Cells. Energy & Fuels, 2020, 34, 11449-11457.	5.1	32
436	Efficient water splitting through solid oxide electrolysis cells with a new hydrogen electrode derived from A-site cation-deficient La0.4Sr0.55Co0.2Fe0.6Nb0.2O3-δ perovskite. Materials Today Energy, 2020, 17, 100458.	4.7	32
437	Boosting the oxygen evolution catalytic performance of perovskites <i>via</i> optimizing calcination temperature. Journal of Materials Chemistry A, 2020, 8, 6480-6486.	10.3	32
438	Bulk and Surface Properties Regulation of Single/Double Perovskites to Realize Enhanced Oxygen Evolution Reactivity. ChemSusChem, 2020, 13, 3045-3052.	6.8	32
439	Tailored Brownmillerite Oxide Catalyst with Multiple Electronic Functionalities Enables Ultrafast Water Oxidation. Chemistry of Materials, 2021, 33, 5233-5241.	6.7	32
440	Recent advances of metal telluride anodes for high-performance lithium/sodium–ion batteries. Materials Horizons, 2022, 9, 524-546.	12.2	32
441	Dynamic Reversible Evolution of Solid Electrolyte Interface in Nonflammable Triethyl Phosphate Electrolyte Enabling Safe and Stable Potassiumâ€ion Batteries. Advanced Functional Materials, 2022, 32, .	14.9	32
442	Cobalt-site cerium doped SmxSr1â^xCoO3â^Î oxides as potential cathode materials for solid-oxide fuel cells. Journal of Power Sources, 2010, 195, 3386-3393.	7.8	31
443	Modified template synthesis and electrochemical performance of a Co ₃ O ₄ /mesoporous cathode for lithium–oxygen batteries. Journal of Materials Chemistry A, 2015, 3, 16132-16141.	10.3	31
444	High yield and low-cost ball milling synthesis of nano-flake Si@SiO2 with small crystalline grains and abundant grain boundaries as a superior anode for Li-ion batteries. Journal of Alloys and Compounds, 2015, 639, 27-35.	5.5	31
445	Core–shell structured Li _{0.33} La _{0.56} TiO ₃ perovskite as a highly efficient and sulfur-tolerant anode for solid-oxide fuel cells. Journal of Materials Chemistry A, 2015, 3, 8545-8551.	10.3	31
446	Significantly Improving the Durability of Single-Chamber Solid Oxide Fuel Cells: A Highly Active CO ₂ -Resistant Perovskite Cathode. ACS Applied Energy Materials, 2018, 1, 1337-1343.	5.1	31
447	A high performance composite cathode with enhanced CO2 resistance for low and intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2018, 405, 124-131.	7.8	31
448	Preparation Strategies of p-Type Cuprous Oxide and Its Solar Energy Conversion Performance. Energy & Energy Ruels, 2021, 35, 17334-17352.	5.1	31
449	Hydrazine as efficient fuel for low-temperature SOFC through ex-situ catalytic decomposition with high selectivity toward hydrogen. International Journal of Hydrogen Energy, 2010, 35, 7919-7924.	7.1	30
450	Facile single-step preparation of Pt/N-graphene catalysts with improved methanol electrooxidation activity. Journal of Solid State Electrochemistry, 2013, 17, 1089-1098.	2.5	30

#	Article	IF	Citations
451	Rational Design of Metal Oxide–Based Cathodes for Efficient Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2018, 8, 1800172.	19.5	30
452	Direct-methane solid oxide fuel cells with an in situ formed Ni–Fe alloy composite catalyst layer over Ni–YSZ anodes. Renewable Energy, 2020, 150, 334-341.	8.9	30
453	A new highly active and CO2-stable perovskite-type cathode material for solid oxide fuel cells developed from A- and B-site cation synergy. Journal of Power Sources, 2020, 457, 227995.	7.8	30
454	Engineering Charge Redistribution within Perovskite Oxides for Synergistically Enhanced Overall Water Splitting., 2021, 3, 1258-1265.		30
455	Electrochemical Performance of SrSc[sub 0.2]Co[sub 0.8]O[sub 3â^Î] Cathode on Sm[sub 0.2]Ce[sub 0.8]O[sub 1.9] Electrolyte for Low Temperature SOFCs. Journal of the Electrochemical Society, 2009, 156, B884.	2.9	29
456	Preparation and characterization of macroporous LiNi1/3Co1/3Mn1/3O2 using carbon sphere as template. Materials Chemistry and Physics, 2011, 129, 296-300.	4.0	29
457	Solid lithium electrolyte-Li4Ti5O12 composites as anodes of lithium-ion batteries showing high-rate performance. Journal of Power Sources, 2013, 231, 177-185.	7.8	29
458	Ethylene glycol as a new sustainable fuel for solid oxide fuel cells with conventional nickel-based anodes. Applied Energy, 2015, 148, 1-9.	10.1	29
459	Insight into an unusual lanthanum effect on the oxygen reduction reaction activity of Ruddlesden-Popper-type cation-nonstoichiometric La _{2â^'x} NiO _{4+Î} (x = 0–0.1) oxides. Journal of Materials Chemistry A, 2015, 3, 6501-6508.	10.3	29
460	A hierarchical Zn ₂ Mo ₃ O ₈ nanodots–porous carbon composite as a superior anode for lithium-ion batteries. Chemical Communications, 2016, 52, 9402-9405.	4.1	29
461	Rationally designed Water-Insertable Layered Oxides with Synergistic Effect of Transition-Metal Elements for High-Performance Oxygen Evolution Reaction. ACS Applied Materials & Samp; Interfaces, 2019, 11, 25227-25235.	8.0	29
462	Enhancing the photocatalytic activity of Ruddlesden-Popper Sr2TiO4 for hydrogen evolution through synergistic silver doping and moderate reducing pretreatment. Materials Today Energy, 2022, 23, 100899.	4.7	29
463	Effect of a reducing agent for silver on the electrochemical activity of an Ag/Ba0.5Sr0.5Co0.8Fe0.2O3â ⁻ Î electrode prepared by electroless deposition technique. Journal of Power Sources, 2009, 186, 244-251.	7.8	28
464	Double-site yttria-doped Sr1â^'xYxCo1â^'yYyO3â^'Î' perovskite oxides as oxygen semi-permeable membranes. Journal of Alloys and Compounds, 2009, 474, 477-483.	5.5	28
465	Comparative study of doped ceria thin-film electrolytes prepared by wet powder spraying with powder synthesized via two techniques. Journal of Power Sources, 2010, 195, 393-401.	7.8	28
466	A novel way to improve performance of proton-conducting solid-oxide fuel cells through enhanced chemical interaction of anode components. International Journal of Hydrogen Energy, 2011, 36, 1683-1691.	7.1	28
467	Interlayer-free electrodes for IT-SOFCs by applying Co3O4 as sintering aid. International Journal of Hydrogen Energy, 2012, 37, 11946-11954.	7.1	28
468	Robust ion-transporting ceramic membrane with an internal short circuit for oxygen production. Journal of Materials Chemistry A, 2013, 1, 9150.	10.3	28

#	Article	IF	CITATIONS
469	Robust non-Pt noble metal-based nanomaterials for electrocatalytic hydrogen generation. Applied Physics Reviews, 2020, 7, .	11.3	28
470	Rational design of spinel oxides as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries. Chemical Physics Reviews, 2020, 1 , .	5.7	28
471	Ultrafine ruthenium-iridium alloy nanoparticles well-dispersed on N-rich carbon frameworks as efficient hydrogen-generation electrocatalysts. Chemical Engineering Journal, 2021, 417, 128105.	12.7	28
472	Activating Both Basal Plane and Edge Sites of Layered Cobalt Oxides for Boosted Water Oxidation. Advanced Functional Materials, 2021, 31, 2103569.	14.9	28
473	Benefitting from Synergistic Effect of Anion and Cation in Antimony Acetate for Stable CH ₃ NH ₃ Pbl ₃ Based Perovskite Solar Cell with Efficiency Beyond 21%. Small, 2021, 17, e2102186.	10.0	28
474	Realizing High and Stable Electrocatalytic Oxygen Evolution for Ironâ€Based Perovskites by Coâ€Dopingâ€Induced Structural and Electronic Modulation. Advanced Functional Materials, 2022, 32, .	14.9	28
475	Comparisons of different carbon conductive additives on the electrochemical performance of activated carbon. Nanotechnology, 2007, 18, 205705.	2.6	27
476	Solid-oxide fuel cell operated on in situ catalytic decomposition products of liquid hydrazine. Journal of Power Sources, 2008, 177, 323-329.	7.8	27
477	Improving single-chamber performance of an anode-supported SOFC by impregnating anode with active nickel catalyst. International Journal of Hydrogen Energy, 2010, 35, 8171-8176.	7.1	27
478	Mechanoactivation-assisted synthesis and electrochemical characterization of manganese lightly doped LiFePO4. Journal of Alloys and Compounds, 2010, 492, 675-680.	5.5	27
479	Heterostructured electrode with concentration gradient shell for highly efficient oxygen reduction at low temperature. Scientific Reports, $2011, 1, 155$.	3.3	27
480	Effect of nickel content and preparation method on the performance of Ni-Al2O3 towards the applications in solid oxide fuel cells. International Journal of Hydrogen Energy, 2011, 36, 10958-10967.	7.1	27
481	Effect of Sm3+ content on the properties and electrochemical performance of SmxSr1â xCoO3â ⁻ ·Î ⁻ (0.2â‰ x â‰ 6 .8) as an oxygen reduction electrodes on doped ceria electrolytes. Electrochimica Acta, 2011, 56, 2870-2876.	5.2	27
482	Coking suppression in solid oxide fuel cells operating on ethanol by applying pyridine as fuel additive. Journal of Power Sources, 2014, 265, 20-29.	7.8	27
483	Significant performance enhancement of yttrium-doped barium cerate proton conductor as electrolyte for solid oxide fuel cells through a Pd ingress–egress approach. Journal of Power Sources, 2014, 257, 308-318.	7.8	27
484	Fructoseâ€Derived Hollow Carbon Nanospheres with Ultrathin and Ordered Mesoporous Shells as Cathodes in Lithium–Sulfur Batteries for Fast Energy Storage. Advanced Sustainable Systems, 2017, 1, 1700081.	5.3	27
485	Rational design of NiCo2O4/g-C3N4 composite as practical anode of lithium-ion batteries with outstanding electrochemical performance from multiple aspects. Journal of Alloys and Compounds, 2019, 805, 522-530.	5.5	27
486	Tailoring structural properties of carbon via implanting optimal co nanoparticles in nâ€rich carbon cages toward highâ€efficiency oxygen electrocatalysis for rechargeable znâ€air batteries. , 2022, 4, 576-585.		27

#	Article	IF	Citations
487	Synergistically boosting the elementary reactions over multiheterogeneous ordered macroporous Mo ₂ C/NCâ€Ru for highly efficient alkaline hydrogen evolution. , 2022, 4, 856-866.		27
488	Evaluation of mixedâ€conducting lanthanumâ€strontiumâ€cobaltite ceramic membrane for oxygen separation. AICHE Journal, 2009, 55, 2603-2613.	3.6	26
489	A comparative study of La0.8Sr0.2MnO3 and La0.8Sr0.2Sc0.1Mn0.9O3 as cathode materials of single-chamber SOFCs operating on a methane–air mixture. Journal of Power Sources, 2009, 191, 225-232.	7.8	26
490	Significant impact of the current collection material and method on the performance of Ba0.5Sr0.5Co0.8Fe0.2O3â^' electrodes in solid oxide fuel cells. Journal of Power Sources, 2011, 196, 5511-5519.	7.8	26
491	Synthesis and characterization of non-precious metal binary catalyst for oxygen reduction reaction in proton exchange membrane fuel cells. Electrochimica Acta, 2012, 77, 324-329.	5.2	26
492	A freestanding composite film electrode stacked from hierarchical electrospun SnO2 nanorods and graphene sheets for reversible lithium storage. RSC Advances, 2014, 4, 9367-9371.	3.6	26
493	Tin and iron co-doping strategy for developing active and stable oxygen reduction catalysts from SrCoO3â°Î´for operating below 800°C. Journal of Power Sources, 2015, 294, 339-346.	7.8	26
494	Evaluation of pulsed laser deposited SrNb0.1Co0.9O3â^î'thin films as promising cathodes for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2015, 295, 117-124.	7.8	26
495	Oriented PrBaCo2O5+δthin films for solid oxide fuel cells. Journal of Power Sources, 2015, 278, 623-629.	7.8	26
496	Materials design for ceramic oxygen permeation membranes: Single perovskite vs. single/double perovskite composite, a case study of tungsten-doped barium strontium cobalt ferrite. Journal of Membrane Science, 2018, 566, 278-287.	8.2	26
497	Ternary Phase Diagram-Facilitated Rapid Screening of Double Perovskites As Electrocatalysts for the Oxygen Evolution Reaction. Chemistry of Materials, 2019, 31, 5919-5926.	6.7	26
498	Reduced air sensitivity and improved electrochemical stability of P2–Na2/3Mn1/2Fe1/4Co1/4O2 through atomic layer deposition-assisted Al2O3 coating. Composites Part B: Engineering, 2019, 173, 106913.	12.0	26
499	Nonstoichiometric perovskite for enhanced catalytic oxidation through excess A-site cation. Chemical Engineering Science, 2020, 219, 115596.	3.8	26
500	Manipulating cation nonstoichiometry towards developing better electrolyte for self-humidified dual-ion solid oxide fuel cells. Journal of Power Sources, 2020, 460, 228105.	7.8	26
501	Recent advances in functional oxides for high energy density sodium-ion batteries. Materials Reports Energy, 2021, 1, 100022.	3.2	26
502	A New Concept and Strategy for Photovoltaic and Thermoelectric Power Generation Based on Anisotropic Crystal Facet Unit. Advanced Functional Materials, 2020, 30, 2002606.	14.9	26
503	Layered perovskite Y1â^'Ca BaCo4O7+ as ceramic membranes for oxygen separation. Journal of Alloys and Compounds, 2010, 492, 552-558.	5 . 5	25
504	Electrophoretic deposition of YSZ thin-film electrolyte for SOFCs utilizing electrostatic-steric stabilized suspensions obtained via high energy ball milling. International Journal of Hydrogen Energy, 2011, 36, 9195-9204.	7.1	25

#	Article	IF	Citations
505	Facile synthesis of porous MgO–CaO–SnOx nanocubes implanted firmly on in situ formed carbon paper and their lithium storage properties. Journal of Materials Chemistry A, 2014, 2, 9126.	10.3	25
506	Multiscale model for solid oxide fuel cell with electrode containing mixed conducting material. AICHE Journal, 2015, 61, 3786-3803.	3.6	25
507	Corncob-shaped ZnFe ₂ O ₄ /C nanostructures for improved anode rate and cycle performance in lithium-ion batteries. RSC Advances, 2015, 5, 31807-31814.	3.6	25
508	Rational Design of LaNiO ₃ /Carbon Composites as Outstanding Platinumâ€Free Photocathodes in Dyeâ€Sensitized Solar Cells With Enhanced Catalysis for the Triiodide Reduction Reaction. Solar Rrl, 2017, 1, 1700074.	5.8	25
509	Silver-doped strontium niobium cobaltite as a new perovskite-type ceramic membrane for oxygen separation. Journal of Membrane Science, 2018, 563, 617-624.	8.2	25
510	The Synergistic Effect Accelerates the Oxygen Reduction/Evolution Reaction in a Zn-Air Battery. Frontiers in Chemistry, 2019, 7, 524.	3.6	25
511	Core Effect on the Performance of N/P Codoped Carbon Encapsulating Noble-Metal Phosphide Nanostructures for Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2019, 2, 2645-2653.	5.1	25
512	Scandium and phosphorus co-doped perovskite oxides as high-performance electrocatalysts for the oxygen reduction reaction in an alkaline solution. Journal of Materials Science and Technology, 2020, 39, 22-27.	10.7	25
513	New TiO ₂ â€Based Oxide for Catalyzing Alkaline Hydrogen Evolution Reaction with Noble Metalâ€Like Performance. Small Methods, 2021, 5, e2100246.	8.6	25
514	Realizing Simultaneous Detrimental Reactions Suppression and Multiple Benefits Generation from Nickel Doping toward Improved Protonic Ceramic Fuel Cell Performance. Small, 2022, 18, e2200450.	10.0	25
515	A novel Ba0.6Sr0.4Co0.9Nb0.1O3â^Î cathode for protonic solid-oxide fuel cells. Journal of Power Sources, 2010, 195, 4700-4703.	7.8	24
516	A composite oxygen-reduction electrode composed of SrSc0.2Co0.8O3â^Î perovskite and Sm0.2Ce0.8O1.9 for an intermediate-temperature solid-oxide fuel cell. International Journal of Hydrogen Energy, 2010, 35, 5601-5610.	7.1	24
517	Nickel zirconia cerate cermet for catalytic partial oxidation of ethanol in a solid oxide fuel cell system. International Journal of Hydrogen Energy, 2012, 37, 8603-8612.	7.1	24
518	A CO2-tolerant nanostructured layer for oxygen transport membranes. RSC Advances, 2014, 4, 25924.	3.6	24
519	Optimal hydrothermal synthesis of hierarchical porous ZnMn 2 O 4 microspheres with more porous core for improved lithium storage performance. Electrochimica Acta, 2016, 207, 58-65.	5.2	24
520	Coal pretreatment and Ag-infiltrated anode for high-performance hybrid direct coal fuel cell. Applied Energy, 2020, 260, 114197.	10.1	24
521	Facile synthesis of synergistic Pt/(Co-N)@C composites as alternative oxygen-reduction electrode of PEMFCs with attractive activity and durability. Composites Part B: Engineering, 2020, 193, 108012.	12.0	24
522	Metal Phosphides Embedded with In Situâ€Formed Metal Phosphate Impurities as Buffer Materials for Highâ€Performance Potassiumâ€Ion Batteries. Advanced Energy Materials, 2021, 11, 2101413.	19.5	24

#	Article	IF	Citations
523	Low temperature synthesis of perovskite oxide using the adsorption properties of cellulose. Journal of Materials Science, 2000, 35, 5639-5644.	3.7	23
524	Partial oxidation of dimethyl ether to H2/syngas over supported Pt catalyst. Journal of Natural Gas Chemistry, 2008, 17, 75-80.	1.8	23
525	Enhanced Sulfur Tolerance of Nickel-Based Anodes for Oxygen-Ion Conducting Solid Oxide Fuel Cells by Incorporating a Secondary Water Storing Phase. Environmental Science & En	10.0	23
526	Three Strongly Coupled Allotropes in a Functionalized Porous All arbon Nanocomposite as a Superior Anode for Lithiumâ€lon Batteries. ChemElectroChem, 2016, 3, 698-703.	3.4	23
527	Mixed protonic-electronic conducting perovskite oxide as a robust oxygen evolution reaction catalyst. Electrochimica Acta, 2018, 282, 324-330.	5.2	23
528	Facilitating Oxygen Redox on Manganese Oxide Nanosheets by Tuning Active Species and Oxygen Defects for Zincâ€Air Batteries. ChemElectroChem, 2020, 7, 4949-4955.	3.4	23
529	Enhancing the oxygen reduction activity of PrBaCo2O5+δ double perovskite cathode by tailoring the calcination temperatures. International Journal of Hydrogen Energy, 2020, 45, 25996-26004.	7.1	23
530	Fabrication and performance of a carbon dioxide-tolerant proton-conducting solid oxide fuel cells with a dual-layer electrolyte. International Journal of Hydrogen Energy, 2010, 35, 10513-10521.	7.1	22
531	High performance tubular solid oxide fuel cells with BSCF cathode. International Journal of Hydrogen Energy, 2012, 37, 13022-13029.	7.1	22
532	Electrochemical contribution of silver current collector to oxygen reduction reaction over Ba0.5Sr0.5Co0.8Fe0.2O3â~δelectrode on oxygen-ionic conducting electrolyte. International Journal of Hydrogen Energy, 2012, 37, 14492-14500.	7.1	22
533	Hierarchical porous cobalt-free perovskite electrode for highly efficient oxygen reduction. Journal of Materials Chemistry, 2012, 22, 16214.	6.7	22
534	Template GNL-assisted synthesis of porous Li _{1.2} Mn _{0.534} Ni _{0.133} Co _{0.133} O ₂ : towards high performance cathodes for lithium ion batteries. RSC Advances, 2015, 5, 25258-25265.	3.6	22
535	Decisive role of mixedâ€valence structure in colossal dielectric constant of LaFeO ₃ . Journal of the American Ceramic Society, 2017, 100, 3042-3049.	3.8	22
536	Hierarchically porous cobalt-carbon nanosphere-in-microsphere composites with tunable properties for catalytic pollutant degradation and electrochemical energy storage. Journal of Colloid and Interface Science, 2018, 530, 556-566.	9.4	22
537	Adaptive observer based approach for the fault diagnosis in solid oxide fuel cells. Journal of Process Control, 2019, 84, 101-114.	3.3	22
538	Enhancing the cycle life of Li-S batteries by designing a free-standing cathode with excellent flexible, conductive, and catalytic properties. Electrochimica Acta, 2019, 298, 421-429.	5.2	22
539	Utilization of low-concentration coal-bed gas to generate power using a core-shell catalyst-modified solid oxide fuel cell. Renewable Energy, 2020, 147, 602-609.	8.9	22
540	Zeolitic Imidazolate Framework-Derived Ordered Pt–Fe Intermetallic Electrocatalysts for High-Performance Zn-Air Batteries. Energy & Description (2020) 24, 11527-11535.	5.1	22

#	Article	IF	Citations
541	Rational Design of a High-Durability Pt-Based ORR Catalyst Supported on Mn/N Codoped Carbon Sheets for PEMFCs. Energy & Samp; Fuels, 2022, 36, 1707-1715.	5.1	22
542	A low resistance and stable lithium-garnet electrolyte interface enabled by a multifunctional anode additive for solid-state lithium batteries. Journal of Materials Chemistry A, 2022, 10, 2519-2527.	10.3	22
543	A high-performance cathode for the next generation of solid-oxide fuel cells. , 2010, , 255-258.		21
544	A single-step synthesized cobalt-free barium ferrites-based composite cathode for intermediate temperature solid oxide fuel cells. Electrochemistry Communications, 2011, 13, 1340-1343.	4.7	21
545	Modeling of Proton-Conducting Solid Oxide Fuel Cells Fueled with Syngas. Energies, 2014, 7, 4381-4396.	3.1	21
546	Facile spray-drying/pyrolysis synthesis of intertwined SiO@CNFs& Composites as superior anode materials for Li-ion batteries. RSC Advances, 2014, 4, 34615-34622.	3.6	21
547	Oxygen permeation behavior through Ce _{0.9} Gd _{0.1} O _{2â~δ} membranes electronically short-circuited by dual-phase Ce _{0.9} Gd _{0.1} O _{2â~δ} –Ag decoration. Journal of Materials Chemistry A, 2015, 3, 19033-19041.	10.3	21
548	Na _{0.86} Co _{0.95} Fe _{0.05} O ₂ Layered Oxide As Highly Efficient Water Oxidation Electrocatalyst in Alkaline Media. ACS Applied Materials & Samp; Interfaces, 2017, 9, 21587-21592.	8.0	21
549	Twoâ€5tep Fabrication of Li ₄ Ti ₅ O ₁₂ â€Coated Carbon Nanofibers as a Flexible Film Electrode for Highâ€Power Lithiumâ€Ion Batteries. ChemElectroChem, 2017, 4, 2286-2292.	3.4	21
550	Dodecylamineâ€Induced Synthesis of a Nitrogenâ€Doped Carbon Comb for Advanced Lithium–Sulfur Battery Cathodes. Advanced Materials Interfaces, 2018, 5, 1701659.	3.7	21
551	Realizing stable high hydrogen permeation flux through BaCo0.4Fe0.4Zr0.1Y0.1O3- $\hat{\Gamma}$ membrane using a thin Pd film protection strategy. Journal of Membrane Science, 2020, 596, 117709.	8.2	21
552	An Adsorptionâ€"Catalysis Pathway toward Sustainable Application of Mesoporous Carbon Nanospheres for Efficient Environmental Remediation. ACS ES&T Water, 2021, 1, 145-156.	4.6	21
553	Effects of preparation methods on the oxygen nonstoichiometry, B-site cation valences and catalytic efficiency of perovskite La0.6Sr0.4Co0.2Fe0.8O3â^Î. Ceramics International, 2009, 35, 3201-3206.	4.8	20
554	A Thermally Self-Sustaining Miniature Solid Oxide Fuel Cell. Journal of Fuel Cell Science and Technology, 2009, 6, .	0.8	20
555	Facile fabrication and improved carbon dioxide tolerance of a novel bilayer-structured ceramic oxygen permeating membrane. Journal of Membrane Science, 2014, 472, 10-18.	8.2	20
556	Preparation of thin electrolyte film via dry pressing/heating /quenching/calcining for electrolyte-supported SOFCs. Ceramics International, 2019, 45, 9866-9870.	4.8	20
557	Improving Moisture/Thermal Stability and Efficiency of CH 3 NH 3 PbI 3 â€Based Perovskite Solar Cells via Gentle Butyl Acrylate Additive Strategy. Solar Rrl, 2021, 5, 2000621.	5.8	20
558	A molecular-level strategy to boost the mass transport of perovskite electrocatalyst for enhanced oxygen evolution. Applied Physics Reviews, 2021, 8, .	11.3	20

#	Article	IF	CITATIONS
559	Hydrogen storage properties of TiMn1.5V0.2-based alloys for application to fuel cell system. Journal of Power Sources, 2010, 195, 8215-8221.	7.8	19
560	Influence of high-energy ball milling of the starting powder on the sintering; microstructure and oxygen permeability of Ba0.5Sr0.5Co0.5Fe0.5O3â ^{**} membranes. Journal of Membrane Science, 2011, 366, 203-211.	8.2	19
561	Cr–Zn Redox Battery with NiFe ₂ O ₄ as Catalyst for Enhanced Degradation of Cr(VI) Pollution. ACS Sustainable Chemistry and Engineering, 2019, 7, 111-116.	6.7	19
562	Tuning Nitrogen in Graphitic Carbon Nitride Enabling Enhanced Performance for Polysulfide Confinement in Li–S Batteries. Energy & Fuels, 2020, 34, 11557-11564.	5.1	19
563	Achieving Safe and Dendrite-Suppressed Solid-State Li Batteries via a Novel Self-Extinguished Trimethyl Phosphate-Based Wetting Agent. Energy & Energy & 11547-11556.	5.1	19
564	Turning Detrimental Effect into Benefits: Enhanced Oxygen Reduction Reaction Activity of Cobalt-Free Perovskites at Intermediate Temperature <i>via</i> CO ₂ -Induced Surface Activation. ACS Applied Materials & Distriction and Surface Activation. ACS Applied Materials & Distriction and Surfaces.	8.0	19
565	Modified cellulose adsorption method for the synthesis of conducting perovskite powders for membrane application. Powder Technology, 2002, 122, 26-33.	4.2	18
566	Cr doping effect in B-site of La0.75Sr0.25MnO3 on its phase stability and performance as an SOFC anode. Rare Metals, 2009, 28, 361-366.	7.1	18
567	In situ electrochemical creation of cobalt oxide nanosheets with favorable performance as a high tap density anode material for lithium-ion batteries. Electrochimica Acta, 2015, 180, 914-921.	5.2	18
568	Modelling the triple phase boundary length in infiltrated SOFC electrodes. International Journal of Hydrogen Energy, 2017, 42, 28836-28851.	7.1	18
569	An extremely active and durable Mo 2 C/graphene-like carbon based electrocatalyst for hydrogen evolution reaction. Materials Today Energy, 2017, 6, 230-237.	4.7	18
570	An Intrinsically Conductive Phosphorusâ€Doped Perovskite Oxide as a New Cathode for Highâ€Performance Dyeâ€Sensitized Solar Cells by Providing Internal Conducting Pathways. Solar Rrl, 2019, 3, 1900108.	5.8	18
571	A Controllable Dual Interface Engineering Concept for Rational Design of Efficient Bifunctional Electrocatalyst for Zinc–Air Batteries. Small, 2022, 18, e2105604.	10.0	18
572	Activation of a single-chamber solid oxide fuel cell by a simple catalyst-assisted in-situ process. Electrochemistry Communications, 2009, 11, 1563-1566.	4.7	17
573	Solid oxide fuel cells with both high voltage and power output by utilizing beneficial interfacial reaction. Physical Chemistry Chemical Physics, 2012, 14, 12173.	2.8	17
574	Porous nanocrystalline TiO2 with high lithium-ion insertion performance. Journal of Materials Science, 2013, 48, 2733-2742.	3.7	17
575	Facile Conversion of Commercial Coarse-Type LiCoO ₂ to Nanocomposite-Separated Nanolayer Architectures as a Way for Electrode Performance Enhancement. ACS Applied Materials & Samp; Interfaces, 2015, 7, 1787-1794.	8.0	17
576	Direct Power Generation from Low Concentration Coalâ€Bed Gas by a Catalystâ€Modified Solid Oxide Fuel Cell. ChemElectroChem, 2018, 5, 1459-1466.	3.4	17

#	Article	IF	CITATIONS
577	Evaluation of the CO2 tolerant cathode for solid oxide fuel cells: Praseodymium oxysulfates/Ba0.5Sr0.5Co0.8Fe0.2O3-δ. Applied Surface Science, 2019, 472, 10-15.	6.1	17
578	Postsynthesis Oxygen Nonstoichiometric Regulation: A New Strategy for Performance Enhancement of Perovskites in Advanced Oxidation. Industrial & Engineering Chemistry Research, 2020, 59, 99-109.	3.7	17
579	New methods to prepare perovskite-type La0.8Sr0.2CoO3 catalyst at low temperature. Studies in Surface Science and Catalysis, 1998, 118, 431-439.	1.5	16
580	Optimization of BaxSr1 \hat{a} °xCo0.9Nb0.1O3 \hat{a} °l' perovskite as oxygen semi-permeable membranes by compositional tailoring. Separation and Purification Technology, 2010, 71, 152-159.	7.9	16
581	Synthesis of nano-particle and highly porous conducting perovskites from simple in situ sol-gel derived carbon templating process. Bulletin of Materials Science, 2010, 33, 371-376.	1.7	16
582	Sintering and oxygen permeation studies of La0.6Sr0.4Co0.2Fe0.8O3â ⁻³ Î ⁻ ceramic membranes with improved purity. Journal of the European Ceramic Society, 2011, 31, 2931-2938.	5.7	16
583	A Threeâ€Dimensional Highly Interconnected Composite Oxygen Reduction Reaction Electrocatalyst prepared from a Core–shell Precursor. ChemSusChem, 2011, 4, 1582-1586.	6.8	16
584	Rational confinement of molybdenum based nanodots in porous carbon for highly reversible lithium storage. Journal of Materials Chemistry A, 2016, 4, 10403-10408.	10.3	16
585	Process Investigation of a Solid Carbon-Fueled Solid Oxide Fuel Cell Integrated with a CO ₂ -Permeating Membrane and a Sintering-Resistant Reverse Boudouard Reaction Catalyst. Energy & Dels, 2016, 30, 1841-1848.	5.1	16
586	Appraisal of carbon-coated Li4Ti5O12 acanthospheres from optimized two-step hydrothermal synthesis as a superior anode for sodium-ion batteries. Journal of Alloys and Compounds, 2017, 705, 164-175.	5.5	16
587	Direct Operation of Solid Oxide Fuel Cells on Low-Concentration Oxygen-Bearing Coal-Bed Methane with High Stability. Energy & Samp; Fuels, 2018, 32, 4547-4558.	5.1	16
588	Rational Design of Superior, Cokingâ€Resistant, Nickelâ€Based Anodes through Tailoring Interfacial Reactions for Solid Oxide Fuel Cells Operated on Methane Fuel. ChemSusChem, 2018, 11, 3112-3119.	6.8	16
589	Electrodeposition of a dendriteâ€free 3D Al anode for improving cycling of an aluminum–graphite battery. , 2022, 4, 155-169.		16
590	Protonic ceramic materials for clean and sustainable energy: advantages and challenges. International Materials Reviews, 2023, 68, 272-300.	19.3	16
591	Activation and Deactivation Kinetics of Oxygen Reduction over a La0.8Sr0.2Sc0.1Mn0.9O3 Cathode. Journal of Physical Chemistry C, 2008, 112, 18690-18700.	3.1	15
592	Facile low-temperature polyol process for LiFePO4 nanoplate andÂcarbon nanotube composite. Solid State Sciences, 2013, 24, 15-20.	3.2	15
593	Are microorganisms indispensable in green microbial nanomaterial synthesis?. RSC Advances, 2014, 4, 14564-14568.	3.6	15
594	Multifold Nanostructuring and Atomicâ€Scale Modulation of Cobalt Phosphide to Significantly Boost Hydrogen Production. Chemistry - A European Journal, 2018, 24, 13800-13806.	3.3	15

#	Article	IF	CITATIONS
595	Ionic Liquid-Modified Co/ZSM-5 Catalyzed the Aerobic Oxidation of Cyclohexane: Toward Improving the Activity and Selectivity. Industrial & Engineering Chemistry Research, 2019, 58, 19832-19838.	3.7	15
596	Chlorine-Doped Perovskite Oxide: A Platinum-Free Cathode for Dye-Sensitized Solar Cells. ACS Applied Materials & Solar Cel	8.0	15
597	In situ growth of nanoflake and nanoflower-like Ni hydrated hydroxide on the surface of Ni foam as a free-standing electrode for high-performance phosphate detection. Journal of Hazardous Materials, 2020, 392, 122313.	12.4	15
598	Partial oxidation of methane to syngas in a mixed-conducting oxygen permeable membrane reactor. Science Bulletin, 2000, 45, 224-226.	1.7	14
599	Effect of fabrication method on properties and performance of bimetallic Ni0.75Fe0.25 anode catalyst for solid oxide fuel cells. International Journal of Hydrogen Energy, 2012, 37, 9287-9297.	7.1	14
600	Iron incorporated Ni–ZrO2 catalysts for electric power generation from methane. International Journal of Hydrogen Energy, 2012, 37, 9801-9808.	7.1	14
601	A new way to increase performance of oxide electrode for oxygen reduction using grain growth inhibitor. Electrochemistry Communications, 2012, 14, 36-38.	4.7	14
602	An Aurivillius Oxide Based Cathode with Excellent CO ₂ Tolerance for Intermediateâ€Temperature Solid Oxide Fuel Cells. Angewandte Chemie, 2016, 128, 9134-9139.	2.0	14
603	Graphene decorated with multiple nanosized active species as dual function electrocatalysts for lithium-oxygen batteries. Electrochimica Acta, 2016, 188, 718-726.	5.2	14
604	Inherently Catalyzed Boudouard Reaction of Bamboo Biochar for Solid Oxide Fuel Cells with Improved Performance. Energy & Energy & 2018, 32, 4559-4568.	5.1	14
605	Layered Co/Ni-free oxides for sodium-ion battery cathode materials. Current Opinion in Green and Sustainable Chemistry, 2019, 17, 29-34.	5.9	14
606	Enhanced coking resistance of a Ni cermet anode by a chromates protective layer. Journal of Energy Chemistry, 2019, 37, 117-125.	12.9	14
607	Tuning the A-Site Cation Deficiency of La0.8Sr0.2FeO3â^î^Perovskite Oxides for High-Efficiency Triiodide Reduction Reaction in Dye-Sensitized Solar Cells. Energy & Energy & 11322-11329.	5.1	14
608	Phase and morphology engineering of porous cobalt–copper sulfide as a bifunctional oxygen electrode for rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2021, 9, 18329-18337.	10.3	14
609	A Direct <i>n</i> -Butane Solid Oxide Fuel Cell Using Ba(Zr _{0.1}) _{0.1} 0.9Ni _{0.05} <td>b>&uasub</td> <td>>0.1215</td>	b> &u asub	>0 .12 15
610	Realizing Interfacial Electron/Hole Redistribution and Superhydrophilic Surface through Building Heterostructural 2Ânm Co _{0.85} Seâ€NiSe Nanograins for Efficient Overall Water Splittings. Small Methods, 2022, 6, e2200459.	8.6	14
611	Characterization and optimization of La0.8Sr0.2Sc0.1Mn0.9O3â°'-based composite electrodes for intermediate-temperature solid-oxide fuel cells. Journal of Power Sources, 2008, 185, 641-648.	7.8	13
612	Low-temperature synthesis of La0.6Sr0.4Co0.2Fe0.8O3â [~] δ perovskite powder via asymmetric sol–gel process and catalytic auto-combustion. Ceramics International, 2009, 35, 2809-2815.	4.8	13

#	Article	IF	Citations
613	Facile auto-combustion synthesis for oxygen separation membrane application. Journal of Membrane Science, 2009, 329, 219-227.	8.2	13
614	Well-crystallized mesoporous samaria-doped ceria from EDTA-citrate complexing process with in situ created NiO as recyclable template. Journal of Alloys and Compounds, 2010, 491, 271-277.	5.5	13
615	Effect of foreign oxides on the phase structure, sintering and transport properties of Ba0.5Sr0.5Co0.8Fe0.2O3 $\hat{a}^{\hat{1}}$ as ceramic membranes for oxygen separation. Separation and Purification Technology, 2011, 81, 384-391.	7.9	13
616	Coke-free direct formic acid solid oxide fuel cells operating at intermediate temperatures. Journal of Power Sources, 2012, 220, 147-152.	7.8	13
617	Influence of sealing materials on the oxygen permeation fluxes of some typical oxygen ion conducting ceramic membranes. Journal of Membrane Science, 2014, 470, 102-111.	8.2	13
618	Fuel cells: Hydrogen induced insulation. Nature Energy, 2016, 1, .	39.5	13
619	Performance and durability of a layered proton conducting solid oxide fuel cell fueled by the dry reforming of methane. RSC Advances, 2017, 7, 44319-44325.	3.6	13
620	Numerical investigation of a non-aqueous lithium-oxygen battery based on lithium superoxide as the discharge product. Applied Energy, 2017, 203, 254-266.	10.1	13
621	Highly Oxygen Nonâ€Stoichiometric BaSc _{0.25} Co _{0.75} O _{3â€Î} as a Highâ€Performance Cathode for Intermediateâ€Temperature Solid Oxide Fuel Cells. ChemElectroChem, 2018, 5, 785-792.	3.4	13
622	Robust Anodeâ€Supported Cells with Fast Oxygen Release Channels for Efficient and Stable CO ₂ Electrolysis at Ultrahigh Current Densities. Small, 2021, 17, e2007211.	10.0	13
623	Recent advances in ZnO-based photosensitizers: Synthesis, modification, and applications in photodynamic cancer therapy. Journal of Colloid and Interface Science, 2022, 621, 440-463.	9.4	13
624	Tunability of Propane Conversion over Alumina Supported Pt and Rh Catalysts. Topics in Catalysis, 2007, 46, 402-413.	2.8	12
625	Effects of sintering atmospheres on sintering behavior, electrical conductivity and oxygen permeability of mixed-conducting membranes. Journal of Membrane Science, 2008, 316, 128-136.	8.2	12
626	Ammonia-mediated suppression of coke formation in direct-methane solid oxide fuel cells with nickel-based anodes. Journal of Power Sources, 2013, 240, 232-240.	7.8	12
627	Design and investigation of dual-layer electrodes for proton exchange membrane fuel cells. Solid State Ionics, 2014, 262, 313-318.	2.7	12
628	Mixed Fuel Strategy for Carbon Deposition Mitigation in Solid Oxide Fuel Cells at Intermediate Temperatures. Environmental Science & Environmental Sci	10.0	12
629	One-pot combustion synthesis of Li3VO4-Li4Ti5O12 nanocomposite as anode material of lithium-ion batteries with improved performance. Electrochimica Acta, 2016, 222, 587-595.	5.2	12
630	Yolk–Shellâ€Structured Cu/Fe@γâ€Fe 2 O 3 Nanoparticles Loaded Graphitic Porous Carbon for the Oxygen Reduction Reaction. Particle and Particle Systems Characterization, 2017, 34, 1700158.	2.3	12

#	Article	IF	Citations
631	Constructing self-standing and non-precious metal heterogeneous nanowire arrays as high-performance oxygen evolution electrocatalysts: Beyond the electronegativity effect of the substrate. Journal of Power Sources, 2018, 396, 421-428.	7.8	12
632	Silver-Perovskite Hybrid Electrocatalysts for Oxygen Reduction Reaction in Alkaline Media. Journal of the Electrochemical Society, 2018, 165, H524-H529.	2.9	12
633	Oxide-based precious metal-free electrocatalysts for anion exchange membrane fuel cells: from material design to cell applications. Journal of Materials Chemistry A, 2021, 9, 3151-3179.	10.3	12
634	Stabilizing Li Anodes in I ₂ Steam to Tackle the Shuttling-Induced Depletion of an Iodide/Triiodide Redox Mediator in Li–O ₂ Batteries with Suppressed Li Dendrite Growth. ACS Applied Materials & Dendrite Growth.	8.0	12
635	One Pot-Synthesized Ag/Ag-Doped CeO ₂ Nanocomposite with Rich and Stable 3D Interfaces and Ce ³⁺ for Efficient Carbon Dioxide Electroreduction. ACS Applied Materials & Samp; Interfaces, 2021, 13, 59993-60001.	8.0	12
636	Mixed-conducting perovskite-type SrxBi1-xFeO3-Î′ oxygen-permeating membranes. Science in China Series B: Chemistry, 2000, 43, 421-427.	0.8	11
637	Development of high-performance cathodes for IT-SOFCs through beneficial interfacial reactions. Electrochemistry Communications, 2009, 11, 2216-2219.	4.7	11
638	Study on proton-conducting solid oxide fuel cells with a conventional nickel cermet anode operating on dimethyl ether. Journal of Power Sources, 2011, 196, 9246-9253.	7.8	11
639	CO2 and water vapor-tolerant yttria stabilized bismuth oxide (YSB) membranes with external short circuit for oxygen separation with CO2 capture at intermediate temperatures. Journal of Membrane Science, 2013, 427, 168-175.	8.2	11
640	Fabrication and operation of flowâ€through tubular SOFCs for electric power and synthesis gas cogeneration from methane. AICHE Journal, 2014, 60, 1036-1044.	3.6	11
641	Maintaining pronounced proton transportation of solid oxides prepared with a sintering additive. Journal of Materials Chemistry A, 2021, 9, 14553-14565.	10.3	11
642	Recent Advances in Bioâ€Compatible Oxygen Singlet Generation and Its Tumor Treatment. Advanced Therapeutics, 2022, 5, .	3.2	11
643	Evaluation of Bi2V0.9Cu0.1O5.35â€"an Aurivillius-Type Conducting Oxideâ€"as a Cathode Material for Single-Chamber Solid-Oxide Fuel Cells. Journal of Fuel Cell Science and Technology, 2010, 7, .	0.8	10
644	Reducing the operation temperature of a solid oxide fuel cell using a conventional nickel-based cermet anode on dimethyl ether fuel through internal partial oxidation. Journal of Power Sources, 2011, 196, 7601-7608.	7.8	10
645	Single-chamber solid oxide fuel cells with nanocatalyst-modified anodes capable of in situ activation. Journal of Power Sources, 2014, 264, 220-228.	7.8	10
646	Oneâ€pot synthesis of silverâ€modified sulfurâ€tolerant anode for SOFCs with an expanded operation temperature window. AICHE Journal, 2017, 63, 4287-4295.	3.6	10
647	Optimization of SnO ₂ Nanoparticles Confined in a Carbon Matrix towards Applications as Highâ€Capacity Anodes in Sodiumâ€Ion Batteries. ChemistrySelect, 2018, 3, 4015-4022.	1.5	10
648	Nitrogen-Doped Graphic Carbon Protected Cu/Co/CoO Nanoparticles for Ultrasensitive and Stable Non-Enzymatic Determination of Glucose and Fructose in Wine. Journal of the Electrochemical Society, 2018, 165, B543-B550.	2.9	10

#	Article	IF	CITATIONS
649	Regulating the Interfacial Electron Density of La _{0.8} Sr _{0.2} Mn _{0.5} Co _{0.5} O ₃ /RuO _{<i>x</i><td>sub></td><td>10</td>}	sub>	10
650	The significant effect of the phase composition on the oxygen reduction reaction activity of a layered oxide cathode. Journal of Materials Chemistry A, 2013, 1, 11026.	10.3	9
651	A cobalt-free layered oxide as an oxygen reduction catalyst for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2015, 40, 15578-15584.	7.1	9
652	Synthesis of Highly Porous Metalâ€Free Oxygen Reduction Electrocatalysts in a Selfâ€Sacrificial Bacterial Cellulose Microreactor. Advanced Sustainable Systems, 2017, 1, 1700045.	5.3	9
653	Fast cation exchange of layered sodium transition metal oxides for boosting oxygen evolution activity and enhancing durability. Journal of Materials Chemistry A, 2020, 8, 8075-8083.	10.3	9
654	Effects of scandium doping concentration on the properties of strontium cobalt oxide membranes. Brazilian Journal of Chemical Engineering, 2009, 26, 563-574.	1.3	8
655	Effect of CuO additive on the sintering and performance of niobium-doped strontium cobaltite as oxygen separation membranes. Separation and Purification Technology, 2010, 74, 28-37.	7.9	8
656	Alternative perovskite materials as a cathode component for intermediate temperature single-chamber solid oxide fuel cell. Journal of Power Sources, 2010, 195, 4758-4764.	7.8	8
657	Morphology and Catalytic Performance of Flake-Shaped NiO-Yttria-Stabilized Zirconia (YSZ) Particles with Nanocrystalline YSZ Grains. Industrial & Engineering Chemistry Research, 2012, 51, 6387-6394.	3.7	8
658	Rational Design of Perovskite-Based Anode with Decent Activity for Hydrogen Electro-Oxidation and Beneficial Effect of Sulfur for Promoting Power Generation in Solid Oxide Fuel Cells. ACS Applied Materials & Diterfaces, 2018, 10, 41257-41267.	8.0	8
659	Cation-Substitution-Tuned Oxygen Electrocatalyst of Spinel Cobaltite MCo ₂ O ₄ (M = Fe, Co, and Ni) Hexagonal Nanoplates for Rechargeable Zn-Air Batteries. Journal of the Electrochemical Society, 2019, 166, A3448-A3455.	2.9	8
660	Perowskitoxidâ€Elektroden zur leistungsstarken photoelektrochemischen Wasserspaltung. Angewandte Chemie, 2020, 132, 140-158.	2.0	8
661	Methane catalytic decomposition integrated with on-line Pd membrane hydrogen separation for fuel cell application. International Journal of Hydrogen Energy, 2010, 35, 2958-2963.	7.1	7
662	Further performance enhancement of a DME-fueled solid oxide fuel cell by applying anode functional catalyst. International Journal of Hydrogen Energy, 2012, 37, 6844-6852.	7.1	7
663	Perovskites: Realizing Ultrafast Oxygen Evolution by Introducing Proton Acceptor into Perovskites (Adv. Energy Mater. 20/2019). Advanced Energy Materials, 2019, 9, 1970071.	19.5	7
664	Spontaneous Formation of Heterodimer Au–Fe ₇ S ₈ Nanoplatelets by a Seeded Growth Approach. Journal of Physical Chemistry C, 2019, 123, 10604-10613.	3.1	7
665	Improvement of solid oxide fuel cell performance by a coreâ€shell structured catalyst using low concentration coal bed methane fuel. International Journal of Energy Research, 2020, 44, 5516-5526.	4.5	7
666	Effects of niobium doping site and concentration on the phase structure and oxygen permeability of Nb-substituted SrCoOx oxides. Ceramics International, 2010, 36, 635-641.	4.8	6

#	Article	IF	Citations
667	Perovskite-Carbon Joint Substrate for Practical Application in Proton Exchange Membrane Fuel Cells under Low-Humidity/High-Temperature Conditions. ACS Applied Materials & Samp; Interfaces, 2022, 14, 30872-30880.	8.0	6
668	In situ templating synthesis of conic Ba0·5Sr0·5Co0·8Fe0·2O3â~δ perovskite at elevated temperature. Bulletin of Materials Science, 2009, 32, 407-412.	1.7	5
669	Development of nickel–iron bimetallic catalytic layer for solid oxide fuel cells: Effect of citric acid. International Journal of Hydrogen Energy, 2014, 39, 9467-9472.	7.1	5
670	Pineâ€Leafâ€Shaped αâ€Fe ₂ O ₃ Micro/Nanostructures with a Preferred Orientation along the (110) Plane for Efficient Reversible Lithium Storage. ChemElectroChem, 2017, 4, 2278-2285.	3.4	5
671	Study on oxygen activation and methane oxidation over La0.8Sr0.2MnO3 electrode in single-chamber solid oxide fuel cells via an electrochemical approach. International Journal of Hydrogen Energy, 2012, 37, 4328-4338.	7.1	4
672	A New Sodium-ion-conducting Layered Perovskite Oxide as Highly Active and Sulfur Tolerant Electrocatalyst for Solid Oxide Fuel Cells. Energy Procedia, 2019, 158, 1660-1665.	1.8	4
673	Synthesis of Flakeâ€Shaped <scp><scp>NiO</scp></scp> – <scp>YSZ</scp> Particles for Highâ€Porosity Anode of Solid Oxide Fuel Cell. Journal of the American Ceramic Society, 2011, 94, 3666-3670.	3.8	3
674	A Comparative Structure and Performance Study of La[sub $1\hat{a}^2$ x]Sr[sub x]CoO[sub $3\hat{a}^2$ d] and La[sub $1\hat{a}^2$ x]Sr[sub x]Co[sub 0.9]Nb[sub 0.1]O[sub $3\hat{a}^2$ d] (x=0.5, 0.7, 0.9, and 1.0) Oxygen Permeable Mixed Conductors. Journal of the Electrochemical Society, 2011, 158, H299.	2.9	3
675	Model based evaluation of the electrochemical reaction sites in solid oxide fuel cell electrodes. International Journal of Hydrogen Energy, 2019, 44, 8439-8459.	7.1	3
676	Statistical methodâ€based calibration and validation of a solid oxide fuel cell model. International Journal of Energy Research, 2019, 43, 2478-2500.	4.5	3
677	Multifunctional Dye Interlayers: Simultaneous Power Conversion Efficiency and Stability Enhancement of Cs ₂ AgBiBr ₆ Leadâ€Free Inorganic Perovskite Solar Cell through Adopting a Multifunctional Dye Interlayer (Adv. Funct. Mater. 23/2020). Advanced Functional Materials, 2020, 30, 2070147.	14.9	3
678	A strategy to reduce the impact of tar on a Ni ―YSZ anode of solid oxide fuel cells. International Journal of Energy Research, 2019, 43, 3038-3048.	4.5	2
679	Revealing the sodiumâ€storage performance enhancement of adsorptionâ€type carbon materials after ammonia treatment: Active nitrogen dopants or specific surface area?. International Journal of Energy Research, 2021, 45, 7447-7456.	4.5	2
680	Improving Moisture/Thermal Stability and Efficiency of CH ₃ NH ₃ Pbl ₃ â€Based Perovskite Solar Cells via Gentle Butyl Acrylate Additive Strategy. Solar Rrl, 2021, 5, 2170035.	5.8	2
681	Perovskite-type B-site Bi-doped ceramic membranes for oxygen separation. Science Bulletin, 2000, 45, 889-893.	1.7	1
682	A High-Performance No-Chamber Fuel Cell Operated on Flame. , 2008, , .		1
683	A double-layer composite electrode based on SrSc0.2Co0.8O3â^Î perovskite with improved performance in intermediate temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2010, 35, 7608-7617.	7.1	1
684	Free-standing nitrogen doped V-O-C nanofiber film as promising electrode for flexible lithium-ion batteries. RSC Advances, 2014, 4, 51062-51066.	3.6	1

#	Article	lF	CITATIONS
685	Electrocatalysis: Coâ€doping Strategy for Developing Perovskite Oxides as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction (Adv. Sci. 2/2016). Advanced Science, 2016, 3, .	11.2	1
686	Protonâ€Conducting Fuel Cells: A New Pd Doped Proton Conducting Perovskite Oxide with Multiple Functionalities for Efficient and Stable Power Generation from Ammonia at Reduced Temperatures (Adv. Energy Mater. 19/2021). Advanced Energy Materials, 2021, 11, 2170075.	19.5	1
687	Investigation of novel zirconium based perovskite-type mixed conducting membranes for oxygen separation. Science Bulletin, 2001, 46, 473-477.	1.7	0
688	A Thermally Self-Sustaining Miniature Solid Oxide Fuel Cell. , 2007, , 117.		0
689	A Thermally Self-Sustaining Miniature Solid Oxide Fuel Cell. , 2007, , .		0
690	A High-Performance Flame Fuel Cell Using Ethanol as Fuels. , 2008, , .		0
691	Lithium-Ion Batteries: Mesoporous and Nanostructured TiO2 layer with Ultra-High Loading on Nitrogen-Doped Carbon Foams as Flexible and Free-Standing Electrodes for Lithium-Ion Batteries (Small 48/2016). Small, 2016, 12, 6768-6768.	10.0	0
692	Frontispiece: New Phosphorus-Doped Perovskite Oxide as an Oxygen Reduction Reaction Electrocatalyst in an Alkaline Solution. Chemistry - A European Journal, 2018, 24, .	3.3	0
693	Special issue on "Innovations in Fuel cells― International Journal of Energy Research, 2019, 43, 2422-2422.	4.5	0
694	Fuel Cells: Infiltrated NiCo Alloy Nanoparticle Decorated Perovskite Oxide: A Highly Active, Stable, and Antisintering Anode for Directâ€Ammonia Solid Oxide Fuel Cells (Small 28/2020). Small, 2020, 16, 2070154.	10.0	0