Guinevere S M Kammeijer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1278444/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High sensitivity glycomics in biomedicine. Mass Spectrometry Reviews, 2022, 41, 1014-1039.	5.4	9
2	Glycosphingolipid-Glycan Signatures of Acute Myeloid Leukemia Cell Lines Reflect Hematopoietic Differentiation. Journal of Proteome Research, 2022, 21, 1029-1040.	3.7	7
3	The minimum information required for a glycomics experiment (MIRAGE): reporting guidelines for capillary electrophoresis. Glycobiology, 2022, 32, 580-587.	2.5	2
4	High-Mannose N-Glycans as Malignant Progression Markers in Early-Stage Colorectal Cancer. Cancers, 2022, 14, 1552.	3.7	30
5	Developments and perspectives in high-throughput protein glycomics: enabling the analysis of thousands of samples. Glycobiology, 2022, 32, 651-663.	2.5	24
6	High Diversity of Glycosphingolipid Glycans of Colorectal Cancer Cell Lines Reflects the Cellular Differentiation Phenotype. Molecular and Cellular Proteomics, 2022, 21, 100239.	3.8	9
7	Sialic Acid Derivatization of Fluorescently Labeled <i>N</i> -Glycans Allows Linkage Differentiation by Reversed-Phase Liquid Chromatography–Fluorescence Detection–Mass Spectrometry. Analytical Chemistry, 2022, 94, 6639-6648.	6.5	10
8	High-Throughput Glycomic Methods. Chemical Reviews, 2022, 122, 15865-15913.	47.7	30
9	Colorectal cancer cell lines show striking diversity of their O-glycome reflecting the cellular differentiation phenotype. Cellular and Molecular Life Sciences, 2021, 78, 337-350.	5.4	34
10	High-throughput glycopeptide profiling of prostate-specific antigen from seminal plasma by MALDI-MS. Talanta, 2021, 222, 121495.	5.5	12
11	Site-Specific <i>N</i> -Linked Glycosylation Analysis of Human Carcinoembryonic Antigen by Sheathless Capillary Electrophoresis–Tandem Mass Spectrometry. Journal of Proteome Research, 2021, 20, 1666-1675.	3.7	24
12	Profiling the proteoforms of urinary prostate-specific antigen by capillary electrophoresis – mass spectrometry. Journal of Proteomics, 2021, 238, 104148.	2.4	12
13	Dopant-Enriched Nitrogen Gas for Enhanced Electrospray Ionization of Released Glycans in Negative Ion Mode. Analytical Chemistry, 2021, 93, 6919-6923.	6.5	14
14	Integrated N- and O-Glycomics of Acute Myeloid Leukemia (AML) Cell Lines. Cells, 2021, 10, 3058.	4.1	7
15	NIST Interlaboratory Study on Glycosylation Analysis of Monoclonal Antibodies: Comparison of Results from Diverse Analytical Methods. Molecular and Cellular Proteomics, 2020, 19, 11-30.	3.8	87
16	Capillary Electrophoresis-Mass Spectrometry at Trial by Metabo-Ring: Effective Electrophoretic Mobility for Reproducible and Robust Compound Annotation. Analytical Chemistry, 2020, 92, 14103-14112.	6.5	44
17	A Matrix-Assisted Laser Desorption/Ionization—Mass Spectrometry Assay for the Relative Quantitation of Antennary Fucosylated N-Glycans in Human Plasma. Frontiers in Chemistry, 2020, 8, 138.	3.6	14
18	Sheathless CE-MS based metabolic profiling of kidney tissue section samples from a mouse model of Polycystic Kidney Disease. Scientific Reports, 2019, 9, 806.	3.3	24

Guinevere S M Kammeijer

#	Article	IF	CITATIONS
19	Highly sensitive CE-ESI-MS analysis of N-glycans from complex biological samples. Nature Communications, 2019, 10, 2137.	12.8	90
20	An In-Depth Glycosylation Assay for Urinary Prostate-Specific Antigen. Analytical Chemistry, 2018, 90, 4414-4421.	6.5	54
21	Plasma N-Glycan Signatures Are Associated With Features ofÂInflammatory Bowel Diseases. Gastroenterology, 2018, 155, 829-843.	1.3	80
22	Sialic acid linkage differentiation of glycopeptides using capillary electrophoresis – electrospray ionization – mass spectrometry. Scientific Reports, 2017, 7, 3733.	3.3	82
23	Pregnancy-associated serum N-glycome changes studied by high-throughput MALDI-TOF-MS. Scientific Reports, 2016, 6, 23296.	3.3	54
24	Longitudinal monitoring of immunoglobulin A glycosylation during pregnancy by simultaneous MALDI-FTICR-MS analysis of N- and O-glycopeptides. Scientific Reports, 2016, 6, 27955.	3.3	36
25	Dopant Enriched Nitrogen Gas Combined with Sheathless Capillary Electrophoresis–Electrospray Ionization-Mass Spectrometry for Improved Sensitivity and Repeatability in Glycopeptide Analysis. Analytical Chemistry, 2016, 88, 5849-5856.	6.5	60
26	Human plasma protein N-glycosylation. Glycoconjugate Journal, 2016, 33, 309-343.	2.7	325
27	Hinge-Region O-Glycosylation of Human Immunoglobulin G3 (IgG3). Molecular and Cellular Proteomics, 2015, 14, 1373-1384.	3.8	90