Yong Liang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12782/publications.pdf

Version: 2024-02-01

117	7,037	45 h-index	81
papers	citations		g-index
133	133 docs citations	133	6383
all docs		times ranked	citing authors

#	Article	IF	CITATIONS
1	An Unexpected Role of a Trace Amount of Water in Catalyzing Proton Transfer in Phosphine-Catalyzed (3 + 2) Cycloaddition of Allenoates and Alkenes. Journal of the American Chemical Society, 2007, 129, 3470-3471.	6.6	427
2	Mechanism, Regioselectivity, and the Kinetics of Phosphineâ€Catalyzed [3+2] Cycloaddition Reactions of Allenoates and Electronâ€Deficient Alkenes. Chemistry - A European Journal, 2008, 14, 4361-4373.	1.7	346
3	Computational Redesign of a PETase for Plastic Biodegradation under Ambient Condition by the GRAPE Strategy. ACS Catalysis, 2021, 11, 1340-1350.	5.5	263
4	Origin of the Relative Stereoselectivity of the \hat{l}^2 -Lactam Formation in the Staudinger Reaction. Journal of the American Chemical Society, 2006, 128, 6060-6069.	6.6	230
5	Unconventional, Chemically Stable, and Soluble Two-Dimensional Angular Polycyclic Aromatic Hydrocarbons: From Molecular Design to Device Applications. Accounts of Chemical Research, 2015, 48, 500-509.	7.6	227
6	Mechanisms and Origins of Switchable Chemoselectivity of Ni-Catalyzed C(aryl)–O and C(acyl)–O Activation of Aryl Esters with Phosphine Ligands. Journal of the American Chemical Society, 2014, 136, 2017-2025.	6.6	218
7	Why Is Copper(I) Complex More Competent Than Dirhodium(II) Complex in Catalytic Asymmetric Oâ^'H Insertion Reactions? A Computational Study of the Metal Carbenoid Oâ^'H Insertion into Water. Journal of the American Chemical Society, 2009, 131, 17783-17785.	6.6	217
8	A Computationally Designed Rh(I)-Catalyzed Two-Component [5+2+1] Cycloaddition of Ene-vinylcyclopropanes and CO for the Synthesis of Cyclooctenones. Journal of the American Chemical Society, 2007, 129, 10060-10061.	6.6	184
9	Metal-free directed sp2-C–H borylation. Nature, 2019, 575, 336-340.	13.7	175
10	Diels–Alder Reactivities of Strained and Unstrained Cycloalkenes with Normal and Inverse-Electron-Demand Dienes: Activation Barriers and Distortion/Interaction Analysis. Journal of the American Chemical Society, 2013, 135, 15642-15649.	6.6	165
11	Metal-free oxidation of aromatic carbon–hydrogen bonds through a reverse-rebound mechanism. Nature, 2013, 499, 192-196.	13.7	162
12	Potassium <i>tert</i> -Butoxide-Catalyzed Dehydrogenative C–H Silylation of Heteroaromatics: A Combined Experimental and Computational Mechanistic Study. Journal of the American Chemical Society, 2017, 139, 6867-6879.	6.6	160
13	Bioorthogonal Cycloadditions: Computational Analysis with the Distortion/Interaction Model and Predictions of Reactivities. Accounts of Chemical Research, 2017, 50, 2297-2308.	7.6	139
14	Theoretical Elucidation of the Origins of Substituent and Strain Effects on the Rates of Diels–Alder Reactions of 1,2,4,5-Tetrazines. Journal of the American Chemical Society, 2014, 136, 11483-11493.	6.6	135
15	Isomeric Cyclopropenes Exhibit Unique Bioorthogonal Reactivities. Journal of the American Chemical Society, 2013, 135, 13680-13683.	6.6	134
16	Control and Design of Mutual Orthogonality in Bioorthogonal Cycloadditions. Journal of the American Chemical Society, 2012, 134, 17904-17907.	6.6	132
17	Iodoarene-Catalyzed Stereospecific Intramolecular sp ³ C–H Amination: Reaction Development and Mechanistic Insights. Journal of the American Chemical Society, 2015, 137, 7564-7567.	6.6	130
18	1,2,4-Triazines Are Versatile Bioorthogonal Reagents. Journal of the American Chemical Society, 2015, 137, 8388-8391.	6.6	123

#	Article	IF	CITATIONS
19	Covalently Patterned Graphene Surfaces by a Force-Accelerated Diels–Alder Reaction. Journal of the American Chemical Society, 2013, 135, 9240-9243.	6.6	121
20	Do Reaction Conditions Affect the Stereoselectivity in the Staudinger Reaction?. Journal of Organic Chemistry, 2006, 71, 6983-6990.	1.7	120
21	Remote Ester Groups Switch Selectivity: Diastereodivergent Synthesis of Tetracyclic Spiroindolines. Journal of the American Chemical Society, 2014, 136, 6900-6903.	6.6	118
22	Ionic and Neutral Mechanisms for C–H Bond Silylation of Aromatic Heterocycles Catalyzed by Potassium <i>tert</i> -Butoxide. Journal of the American Chemical Society, 2017, 139, 6880-6887.	6.6	111
23	Synthesis and Reactivity Comparisons of 1â€Methylâ€3â€&ubstituted Cyclopropene Miniâ€ŧags for Tetrazine Bioorthogonal Reactions. Chemistry - A European Journal, 2014, 20, 3365-3375.	1.7	102
24	Distortion-accelerated cycloadditions and strain-release-promoted cycloreversions in the organocatalytic carbonyl-olefin metathesis. Chemical Science, 2014, 5, 471-475.	3.7	91
25	Diels–Alder Reactivities of Benzene, Pyridine, and Di-, Tri-, and Tetrazines: The Roles of Geometrical Distortions and Orbital Interactions. Journal of the American Chemical Society, 2016, 138, 1660-1667.	6.6	91
26	Gold-Catalyzed Intermolecular Reactions of Propiolic Acids with Alkenes: [4 + 2] Annulation and Enyne Cross Metathesis. Journal of the American Chemical Society, 2012, 134, 208-211.	6.6	88
27	Microwave- and Photoirradiation-Induced Staudinger Reactions of Cyclic Imines and Ketenes Generated from α-Diazoketones. A Further Investigation into the Stereochemical Process. Journal of Organic Chemistry, 2005, 70, 334-337.	1.7	87
28	Discovery of new mutually orthogonal bioorthogonal cycloaddition pairs through computational screening. Chemical Science, 2016, 7, 1257-1261.	3.7	84
29	Enzyme-catalysed [6+4] cycloadditions in the biosynthesis of natural products. Nature, 2019, 568, 122-126.	13.7	83
30	New Insights into the Torquoselectivity of the Staudinger Reaction. Journal of the American Chemical Society, 2009, 131, 1542-1549.	6.6	82
31	Diels–Alder Reactions of Graphene: Computational Predictions of Products and Sites of Reaction. Journal of the American Chemical Society, 2013, 135, 17643-17649.	6.6	82
32	Chiral Phosphoric Acid Catalyzed Highly Enantioselective Desymmetrization of 2-Substituted and 2,2-Disubstituted 1,3-Diols via Oxidative Cleavage of Benzylidene Acetals. Journal of the American Chemical Society, 2014, 136, 12249-12252.	6.6	82
33	Highly Diastereoselective Construction of Fused Carbocycles from Cyclopropaneâ€1,1â€dicarboxylates and Cyclic Enol Silyl Ethers: Scope, Mechanism, and Origin of Diastereoselectivity. Chemistry - A European Journal, 2012, 18, 2196-2201.	1.7	74
34	Enantioselective total synthesis of (+)-asteriscanolide via $Rh(i)$ -catalyzed [(5+2)+1] reaction. Chemical Communications, 2011, 47, 6659.	2.2	70
35	Generation of hydroxyl radical-activatable ratiometric near-infrared bimodal probes for early monitoring of tumor response to therapy. Nature Communications, 2021, 12, 6145.	5.8	66
36	Mechanistic Twist of the [8+2] Cycloadditions of Dienylisobenzofurans and Dimethyl Acetylenedicarboxylate:  Stepwise [8+2] versus [4+2]/[1,5]-Vinyl Shift Mechanisms Revealed through a Theoretical and Experimental Study. Journal of the American Chemical Society, 2007, 129, 10773-10784.	6.6	63

#	Article	IF	CITATIONS
37	Leaving Group Assisted Strategy for Photoinduced Fluoroalkylations Using <i>N</i> â€Hydroxybenzimidoyl Chloride Esters. Angewandte Chemie - International Edition, 2019, 58, 624-627.	7.2	60
38	Ternary Catalysis Enabled Three-Component Asymmetric Allylic Alkylation as a Concise Track to Chiral $\hat{l}_{\pm},\hat{l}_{\pm}$ -Disubstituted Ketones. Journal of the American Chemical Society, 2021, 143, 20818-20827.	6.6	60
39	Tunable Carbonyl Ylide Reactions: Selective Synthesis of Dihydrofurans and Dihydrobenzoxepines. Angewandte Chemie - International Edition, 2011, 50, 7874-7878.	7.2	59
40	A Versatile Method for the Synthesis of 3-Alkoxycarbonyl \hat{l}^2 -Lactam Derivatives. Journal of Organic Chemistry, 2006, 71, 815-818.	1.7	58
41	Distortion-Controlled Reactivity and Molecular Dynamics of Dehydro-Diels–Alder Reactions. Journal of the American Chemical Society, 2016, 138, 8247-8252.	6.6	57
42	A potassium tert-butoxide and hydrosilane system for ultra-deep desulfurization of fuels. Nature Energy, 2017, 2, .	19.8	55
43	A relay catalysis strategy for enantioselective nickel-catalyzed migratory hydroarylation forming chiral α-aryl alkylboronates. CheM, 2021, 7, 3171-3188.	5.8	55
44	Why Bistetracenes Are Much Less Reactive Than Pentacenes in Diels–Alder Reactions with Fullerenes. Journal of the American Chemical Society, 2014, 136, 10743-10751.	6.6	52
45	Total Synthesis of (+)â€Asteriscanolide: Further Exploration of the Rhodium(I)â€Catalyzed [(5+2)+1] Reaction of Eneâ€Vinylcyclopropanes and CO. Chemistry - an Asian Journal, 2012, 7, 593-604.	1.7	51
46	Why Alkynyl Substituents Dramatically Accelerate Hexadehydro-Diels–Alder (HDDA) Reactions: Stepwise Mechanisms of HDDA Cycloadditions. Organic Letters, 2014, 16, 5702-5705.	2.4	51
47	Nitrene Equivalent Mediated Metal-Free Ring Expansions of Alkylidenecyclopropanes and an Alkylidenecyclobutane. Organic Letters, 2006, 8, 5877-5879.	2.4	45
48	Density Functional Theory Study of the Mechanism and Origins of Stereoselectivity in the Asymmetric Simmons–Smith Cyclopropanation with Charette Chiral Dioxaborolane Ligand. Journal of the American Chemical Society, 2011, 133, 9343-9353.	6.6	42
49	Bioorthogonal release of sulfonamides and mutually orthogonal liberation of two drugs. Chemical Communications, 2018, 54, 14089-14092.	2.2	42
50	Rational Design of a Narrow-Bandgap Conjugated Polymer Using the Quinoidal Thieno[3,2- <i>b</i> jthiophene-Based Building Block for Organic Field-Effect Transistor Applications. Macromolecules, 2019, 52, 4749-4756.	2.2	41
51	Metalâ€Free Directed Câ^'H Borylation of Pyrroles. Angewandte Chemie - International Edition, 2021, 60, 8500-8504.	7.2	40
52	Design, Synthesis, and Validation of an Effective, Reusable Silicon-Based Transfer Agent for Room-Temperature Pd-Catalyzed Cross-Coupling Reactions of Aryl and Heteroaryl Chlorides with Readily Available Aryl Lithium Reagents. Journal of the American Chemical Society, 2016, 138, 1836-1839.	6.6	38
53	Reactions in Elastomeric Nanoreactors Reveal the Role of Force on the Kinetics of the Huisgen Reaction on Surfaces. Journal of the American Chemical Society, 2014, 136, 10553-10556.	6.6	37
54	Rational construction of a reversible arylazo-based NIR probe for cycling hypoxia imaging in vivo. Nature Communications, 2021, 12, 2772.	5.8	37

#	Article	IF	CITATIONS
55	Integrated redox-active reagents for photoinduced regio- and stereoselective fluorocarboborylation. Nature Communications, 2020, 11, 2572.	5.8	36
56	Copper-catalysed photoinduced decarboxylative alkynylation: a combined experimental and computational study. Chemical Science, 2020, 11, 4939-4947.	3.7	35
57	Isomeric triazines exhibit unique profiles of bioorthogonal reactivity. Chemical Science, 2019, 10, 9109-9114.	3.7	33
58	Computational and Experimental Studies of Phthaloyl Peroxide-Mediated Hydroxylation of Arenes Yield a More Reactive Derivative, 4,5-Dichlorophthaloyl Peroxide. Journal of Organic Chemistry, 2015, 80, 8084-8095.	1.7	31
59	Access to Functionalized <i>E</i> -Allylsilanes and <i>E</i> -Alkenylsilanes through Visible-Light-Driven Radical Hydrosilylation of Mono- and Disubstituted Allenes. Organic Letters, 2019, 21, 9836-9840.	2.4	31
60	Design of a 1,8-naphthalimide-based OFF-ON type bioorthogonal reagent for fluorescent imaging in live cells. Chinese Chemical Letters, 2019, 30, 2169-2172.	4.8	30
61	Palladiumâ€Catalyzed Silacyclization of (Hetero)Arenes with a Tetrasilane Reagent through Twofold Câ^'H Activation. Angewandte Chemie - International Edition, 2021, 60, 7066-7071.	7.2	30
62	Mechanistic Insights into Two-Phase Radical C–H Arylations. ACS Central Science, 2015, 1, 456-462.	5. 3	29
63	Regio- and enantioselective remote hydroarylation using a ligand-relay strategy. Nature Communications, 2022, 13, 2471.	5.8	28
64	Computational Design of Enhanced Enantioselectivity in Chiral Phosphoric Acid-Catalyzed Oxidative Desymmetrization of 1,3-Diol Acetals. Journal of the American Chemical Society, 2020, 142, 8506-8513.	6.6	27
65	Molecular Basis for the Final Oxidative Rearrangement Steps in Chartreusin Biosynthesis. Journal of the American Chemical Society, 2018, 140, 10909-10914.	6.6	26
66	Metalâ€Free Oxidative Bâ^'N Coupling of nido â€Carborane with Nâ€Heterocycles. Angewandte Chemie - International Edition, 2019, 58, 11886-11892.	7.2	26
67	How Tethers Control the Chemo- and Regioselectivities of Intramolecular Cycloadditions between Aryl-1-aza-2-azoniaallenes and Alkenes. Organic Letters, 2014, 16, 4260-4263.	2.4	24
68	Origins of halogen effects in bioorthogonal sydnone cycloadditions. Chemical Communications, 2018, 54, 5082-5085.	2.2	24
69	Thermally Activated Transient Dipoles and Rotational Dynamics of Hydrogen-Bonded and Charge-Transferred Diazabicyclo [2.2.2]Octane Molecular Rotors. Journal of the American Chemical Society, 2019, 141, 16802-16809.	6.6	24
70	Rhâ€Catalyzed Decarbonylative Crossâ€Coupling between <i>o</i> aê€Carboranes and Twisted Amides: A Regioselective, Additiveâ€Free, and Concise Lateâ€Stage Carboranylation. Chemistry - A European Journal, 2021, 27, 2699-2706.	1.7	24
71	Mechanisms of Cascade Reactions in the Syntheses of Camptothecin-Family Alkaloids: Intramolecular [4 ⁺ + 2] Reactions of <i>N</i> -Arylimidates and Alkynes. Organic Letters, 2009, 11, 5302-5305.	2.4	23
72	Design and Development of a Bioorthogonal, Visualizable and Mitochondria‶argeted Hydrogen Sulfide (H ₂ S) Delivery System. Angewandte Chemie - International Edition, 2022, 61, .	7.2	23

#	Article	IF	CITATIONS
73	Type II Anion Relay Chemistry: Conformational Constraints To Achieve Effective [1,5]-Vinyl Brook Rearrangements. Journal of the American Chemical Society, 2017, 139, 8710-8717.	6.6	22
74	Halogen effects on phenylethynyl palladium(II) complexes for living polymerization of isocyanides: a combined experimental and computational investigation. Science China Chemistry, 2019, 62, 491-499.	4.2	22
75	Rhodium-catalyzed selective direct arylation of phosphines with aryl bromides. Nature Communications, 2022, 13 , .	5.8	22
76	Bialternacins A–F, Aromatic Polyketide Dimers from an Endophytic Alternaria sp Journal of Natural Products, 2019, 82, 792-797.	1,5	21
77	<scp>Ligandâ€Controlled Palladiumâ€Catalyzed</scp> Regiodivergent Defluorinative Allylation of <scp><i>gem</i>pôliconocyclopropanes</scp> via <scp>ifâ€Bond</scp> Activation. Chinese Journal of Chemistry, 2022, 40, 2345-2355.	2.6	21
78	Chemo-, site-selective reduction of nitroarenes under blue-light, catalyst-free conditions. Chinese Chemical Letters, 2022, 33, 2420-2424.	4.8	19
79	<i>>para</i> â€Selective Câ^'H Borylation of Aromatic Quaternary Ammonium and Phosphonium Salts. Angewandte Chemie - International Edition, 2022, 61, .	7.2	18
80	Diastereoselective Synthesis of Polysubstituted Piperidines through Visibleâ€Lightâ€Driven Silylative Cyclization of Azaâ€1,6â€Dienes: Experimental and DFT Studies. Chemistry - A European Journal, 2019, 25, 16506-16510.	1.7	16
81	Leaving Group Assisted Strategy for Photoinduced Fluoroalkylations Using <i>N</i> i>a€Hydroxybenzimidoyl Chloride Esters. Angewandte Chemie, 2019, 131, 634-637.	1.6	16
82	Electrochemical Aziridination of Tetrasubstituted Alkenes with Ammonia. CCS Chemistry, 2022, 4, 693-703.	4.6	16
83	<i>In Vitro</i> Reconstitution of Cinnamoyl Moiety Reveals Two Distinct Cyclases for Benzene Ring Formation. Journal of the American Chemical Society, 2022, 144, 7939-7948.	6.6	16
84	Dynamical Trajectory Study of the Transannular [6+4] and Ambimodal Cycloaddition in the Biosynthesis of Heronamides. Journal of Organic Chemistry, 2020, 85, 9440-9445.	1.7	14
85	Computationally designed ligands enable tunable borylation of remote C–H bonds in arenes. CheM, 2022, 8, 1775-1788.	5. 8	14
86	Origin of Site Selectivity in Toluene Hydroxylation by Cytochrome P450 Enzymes. Journal of Organic Chemistry, 2021, 86, 13768-13773.	1.7	13
87	Diversification of Aryl Sulfonyl Compounds through Ligandâ€Controlled <i>meta</i> ―and <i>para</i> â^'H Borylation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	13
88	Metalâ€Free Directed Câ^'H Borylation of Pyrroles. Angewandte Chemie, 2021, 133, 8581-8585.	1.6	12
89	Regio- and enantioselective nucleophilic addition to gem-difluoroallenes. , 2022, 1, 227-234.		12
90	Thieme Chemistry Journal Awardees - Where are They Now? Phosphine- and Water-Cocatalyzed [3+2] Cycloaddition Reactions of 2-Methyl-2,3-butadienoate with Fumarates: A Computational and Experimental Study. Synlett, 2009, 2009, 905-909.	1.0	10

#	Article	IF	Citations
91	Unexpected, Latent Radical Reaction of Methane Propagated by Trifluoromethyl Radicals. Journal of Organic Chemistry, 2016, 81, 9820-9825.	1.7	10
92	Rhodium(III)-Catalyzed C(sp ²)â€"H Chemoselective Annulation to O-Cyclized Isochromen-imines from Benzamides. Organic Letters, 2020, 22, 9462-9467.	2.4	10
93	Rhodium-catalysed selective C–C bond activation and borylation of cyclopropanes. Chemical Science, 2021, 12, 3599-3607.	3.7	10
94	Selective annulation of benzamides with internal alkynes catalyzed by an electron-deficient rhodium catalyst. Chinese Chemical Letters, 2021, 32, 1717-1720.	4.8	10
95	An NADPHâ€Dependent Ketoreductase Catalyses the Tetracyclic to Pentacyclic Skeletal Rearrangement in Chartreusin Biosynthesis. Angewandte Chemie - International Edition, 2021, 60, 26378-26384.	7.2	10
96	Palladium-catalyzed stereospecific C–P coupling toward diverse PN-heterocycles. CheM, 2022, 8, 569-579.	5.8	10
97	Influence of Water and Enzyme on the Post-Transition State Bifurcation of NgnD-Catalyzed Ambimodal [6+4]/[4+2] Cycloaddition. Journal of the American Chemical Society, 2021, 143, 21003-21009.	6.6	9
98	Metal―and Strainâ€Free Bioorthogonal Cycloaddition of <i>>o</i> àêDiones with Furanâ€2(3 <i>H</i>)â€one as Anionic Cycloaddend. Angewandte Chemie - International Edition, 2022, 61, .	7.2	9
99	Computational and experimental investigation on the BCl ₃ promoted intramolecular amination of alkenes and alkynes. Organic and Biomolecular Chemistry, 2019, 17, 2776-2783.	1.5	8
100	Tautomerization and Dimerization of $6,13\hat{a}\in D$ is both the derivatives of Pentacene. Chemistry - A European Journal, 2017, 23, 6111-6117.	1.7	7
101	Cytotoxic aromatic polyketides from an insect derived Streptomyces sp. NA4286. Tetrahedron Letters, 2019, 60, 1706-1709.	0.7	7
102	Metal-free generation of hydroxyl radicals by benzoate-mediated decomposition of peroxides. Chemical Communications, 2020, 56, 7443-7446.	2.2	7
103	Diastereoselective Access to Tetracyclic Eightâ€Membered Lactams through a Dearomative Heck Reaction and an Alkylative Ringâ€Opening Driven by Photoexcited Spiroindolines. Chemistry - A European Journal, 2021, 27, 6308-6314.	1.7	7
104	A [6+4]-cycloaddition adduct is the biosynthetic intermediate in streptoseomycin biosynthesis. Nature Communications, 2021, 12, 2092.	5.8	7
105	Synthesis of 7-hydroxy-6 <i>H</i> -naphtho[2,3- <i>c</i>]coumarin <i>via</i> a TsOH-mediated tandem reaction. Chemical Communications, 2020, 56, 10369-10372.	2.2	6
106	A BBE-like Oxidase, AsmF, Dictates the Formation of Naphthalenic Hydroxyl Groups in Ansaseomycin Biosynthesis. Organic Letters, 2021, 23, 3724-3728.	2.4	6
107	Conformational remodeling enhances activity of lanthipeptide zinc-metallopeptidases. Nature Chemical Biology, 2022, 18, 724-732.	3.9	6
108	Kinetic Resolution of Spiroindolines through Ir-Catalyzed Asymmetric Allylative Ring-Opening Reaction. Organic Letters, 2021, 23, 6664-6668.	2.4	5

#	Article	IF	CITATIONS
109	The role of CuI in the siloxane-mediated Pd-catalyzed cross-coupling reactions of aryl iodides with aryl lithium reagents. Chinese Chemical Letters, 2021, 32, 441-444.	4.8	4
110	An NADPHâ€Dependent Ketoreductase Catalyses the Tetracyclic to Pentacyclic Skeletal Rearrangement in Chartreusin Biosynthesis. Angewandte Chemie, 2021, 133, 26582-26588.	1.6	2
111	Fluorogenic sydnonimine probes for orthogonal labeling. Organic and Biomolecular Chemistry, 2022,	1.5	2
112	<i>>para</i> â€Selective Câ^'H Borylation of Aromatic Quaternary Ammonium and Phosphonium Salts. Angewandte Chemie, 0, , .	1.6	2
113	A Unique Skeletal Rearrangement of a Bicyclo[3.3.1]nonanetrione to a Tetrahydroquinolin-2(1H)-one System. Synlett, 2018, 29, 1711-1716.	1.0	1
114	Design and Development of a Bioorthogonal, Visualizable and Mitochondriaâ€Targeted Hydrogen Sulfide (H2S) Delivery System. Angewandte Chemie, 0, , .	1.6	1
115	Diversification of Aryl Sulfonyl Compounds through Ligandâ€Controlled <i>meta</i> 倕and <i>para</i> åe€câ^'H Borylation. Angewandte Chemie, 2022, 134, .	1.6	1
116	Microwave- and Photoirradiation-Induced Staudinger Reactions of Cyclic Imines and Ketenes Generated from \hat{I}_{\pm} -Diazoketones. A Further Investigation into the Stereochemical Process ChemInform, 2005, 36, no.	0.1	0
117	Metal―and Strainâ€Free Bioorthogonal Cycloaddition of <i>>o</i> > â€Diones with Furanâ€2(3 <i>H</i>)â€one as Anionic Cycloaddend. Angewandte Chemie, 0, , .	1.6	0