Iris Yedidia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12781/publications.pdf Version: 2024-02-01

IDIS VEDIDIA

#	Article	IF	CITATIONS
1	Host Range and Molecular Phylogenies of the Soft Rot Enterobacterial Genera <i>Pectobacterium</i> and <i>Dickeya</i> . Phytopathology, 2007, 97, 1150-1163.	2.2	469
2	Involvement of Jasmonic Acid/Ethylene Signaling Pathway in the Systemic Resistance Induced in Cucumber by Trichoderma asperellum T203. Phytopathology, 2005, 95, 76-84.	2.2	431
3	Title is missing!. Plant and Soil, 2001, 235, 235-242.	3.7	377
4	Concomitant Induction of Systemic Resistance to Pseudomonas syringae pv. lachrymans in Cucumber by Trichoderma asperellum (T-203) and Accumulation ofPhytoalexins. Applied and Environmental Microbiology, 2003, 69, 7343-7353.	3.1	365
5	Induction and accumulation of PR proteins activityduring early stages of root colonizationby the mycoparasite Trichoderma harzianum strain T-203. Plant Physiology and Biochemistry, 2000, 38, 863-873.	5.8	252
6	The Role of Secretion Systems and Small Molecules in Soft-Rot <i>Enterobacteriaceae</i> Pathogenicity. Annual Review of Phytopathology, 2012, 50, 425-449.	7.8	217
7	Plant phenolic acids affect the virulence of <scp><i>P</i></scp> <i>ectobacterium aroidearum</i> and <scp><i>P</i></scp> <i>Carotovorum</i> ssp. <i>brasiliense</i> via quorum sensing regulation. Molecular Plant Pathology, 2016, 17, 487-500.	4.2	69
8	Plant phenolic volatiles inhibit quorum sensing in pectobacteria and reduce their virulence by potential binding to Expl and ExpR proteins. Scientific Reports, 2016, 6, 38126.	3.3	66
9	Effects of plant antimicrobial phenolic compounds on virulence of the genus Pectobacterium. Research in Microbiology, 2015, 166, 535-545.	2.1	52
10	Differential pathogenicity and genetic diversity among <i>Pectobacterium carotovorum</i> ssp. <i>carotovorum</i> isolates from monocot and dicot hosts support early genomic divergence within this taxon. Environmental Microbiology, 2008, 10, 2746-2759.	3.8	43
11	Efficient, long-lasting resistance against the soft rot bacterium Pectobacterium carotovorum in calla lily provided by the plant activator methyl jasmonate. Plant Pathology, 2007, 56, 692-701.	2.4	38
12	Priming of Antimicrobial Phenolics During Induced Resistance Response TowardsPectobacterium carotovorumin the Ornamental Monocot Calla Lily. Journal of Agricultural and Food Chemistry, 2007, 55, 10315-10322.	5.2	33
13	Pectobacterium and Dickeya: Environment to Disease Development. , 2021, , 39-84.		27
14	Diseases Caused by Pectobacterium and Dickeya Species Around the World. , 2021, , 215-261.		25
15	Management of Diseases Caused by Pectobacterium and Dickeya Species. , 2021, , 175-214.		20
16	Direct Binding of Salicylic Acid to <i>Pectobacterium N</i> Acyl-Homoserine Lactone Synthase. ACS Chemical Biology, 2020, 15, 1883-1891.	3.4	18
17	Combining flow cytometry andgfpreporter gene for quantitative evaluation ofPectpbacterium carotovorumssp.carotovoruminOrnithogalum dubiumplantlets. Journal of Applied Microbiology, 2010, 108, 1136-1144.	3.1	15
18	Interkingdom Signaling Interference: The Effect of Plant-Derived Small Molecules on Quorum Sensing in Plant-Pathogenic Bacteria. Annual Review of Phytopathology, 2021, 59, 153-190.	7.8	15

Iris Yedidia

#	Article	IF	CITATIONS
19	Priming of protein expression in the defence response of <i><scp>Z</scp>antedeschia aethiopica</i> to <i><scp>P</scp>ectobacterium carotovorum</i> . Molecular Plant Pathology, 2014, 15, 364-378.	4.2	13
20	Expression levels of antimicrobial peptide tachyplesin I in transgenic Ornithogalum lines affect the resistance to Pectobacterium infection. Journal of Biotechnology, 2016, 238, 22-29.	3.8	13
21	Phloretin, an Apple Phytoalexin, Affects the Virulence and Fitness of Pectobacterium brasiliense by Interfering With Quorum-Sensing. Frontiers in Plant Science, 2021, 12, 671807.	3.6	13
22	Genetic transformation of Ornithogalum via particle bombardment and generation of Pectobacterium carotovorum-resistant plants. Plant Science, 2014, 228, 150-158.	3.6	12
23	Molecular Interactions of Pectobacterium and Dickeya with Plants. , 2021, , 85-147.		12
24	Host Specificity and Differential Pathogenicity of Pectobacterium Strains from Dicot and Monocot Hosts. Microorganisms, 2020, 8, 1479.	3.6	10
25	Transcriptome Profiling of Ornithogalum dubium Leaves and Flowers to Identify Key Carotenoid Genes for CRISPR Gene Editing. Plants, 2020, 9, 540.	3.5	10
26	The plant activator BTH promotes Ornithogalum dubium and O. thyrsoides differentiation and regeneration in vitro. Biologia Plantarum, 2013, 57, 41-48.	1.9	8
27	Structural Elucidation of Three Novel Kaempferol O-tri-Glycosides that Are Involved in the Defense Response of Hybrid Ornithogalum to Pectobacterium carotovorum. Molecules, 2019, 24, 2910.	3.8	7
28	New grapefruit cultivars exhibit low cytochrome P4503A4-Inhibition activity. Food and Chemical Toxicology, 2020, 137, 111135.	3.6	7
29	Ecological adaptations influence the susceptibility of plants in the genus Zantedeschia to soft rot Pectobacterium spp Horticulture Research, 2021, 8, 13.	6.3	7
30	Induction of disease resistance in ornamental geophytes. Israel Journal of Plant Sciences, 2009, 57, 401-410.	0.5	6
31	A systemic response of geophytes is demonstrated by patterns of protein expression and the accumulation of signal molecules in Zantedeschia aethiopica. Plant Physiology and Biochemistry, 2013, 71, 218-225.	5.8	4
32	Root-Associated Microbiomes, Growth and Health of Ornamental Geophytes Treated with Commercial Plant Growth-Promoting Products. Microorganisms, 2021, 9, 1785.	3.6	0
33	Use of X-ray Mutagenesis to Increase Genetic Diversity of Zantedeschia aethiopica for Early Flowering, Improved Tolerance to Bacterial Soft Rot, and Higher Yield. Agronomy, 2021, 11, 2537.	3.0	0