Shutao Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/127793/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhanced Gene Delivery and siRNA Silencing by Gold Nanoparticles Coated with Charge-Reversal Polyelectrolyte. ACS Nano, 2010, 4, 5505-5511.	14.6	370
2	Multifunctional nanoparticles co-delivering Trp2 peptide and CpG adjuvant induce potent cytotoxic T-lymphocyte response against melanoma and its lung metastasis. Journal of Controlled Release, 2013, 172, 259-265.	9.9	199
3	Intravenous Delivery of siRNA Targeting CD47 Effectively Inhibits Melanoma Tumor Growth and Lung Metastasis. Molecular Therapy, 2013, 21, 1919-1929.	8.2	165
4	Co-delivery of Cisplatin and Rapamycin for Enhanced Anticancer Therapy through Synergistic Effects and Microenvironment Modulation. ACS Nano, 2014, 8, 4996-5009.	14.6	163
5	Nanoparticles with Precise Ratiometric Co‣oading and Coâ€Delivery of Gemcitabine Monophosphate and Cisplatin for Treatment of Bladder Cancer. Advanced Functional Materials, 2014, 24, 6601-6611.	14.9	154
6	Nanoformulations for combination or cascade anticancer therapy. Advanced Drug Delivery Reviews, 2017, 115, 3-22.	13.7	145
7	PolyMetformin combines carrier and anticancer activities for in vivo siRNA delivery. Nature Communications, 2016, 7, 11822.	12.8	133
8	Nanoparticles Escaping RES and Endosome: Challenges for siRNA Delivery for Cancer Therapy. Journal of Nanomaterials, 2011, 2011, 1-12.	2.7	129
9	Temperature-Sensitive Lipid-Coated Carbon Nanotubes for Synergistic Photothermal Therapy and Gene Therapy. ACS Nano, 2021, 15, 6517-6529.	14.6	129
10	Nanoparticles containing insoluble drug for cancer therapy. Biotechnology Advances, 2014, 32, 778-788.	11.7	127
11	Elimination Pathways of Systemically Delivered siRNA. Molecular Therapy, 2011, 19, 381-385.	8.2	125
12	Lipid-Coated Cisplatin Nanoparticles Induce Neighboring Effect and Exhibit Enhanced Anticancer Efficacy. ACS Nano, 2013, 7, 9896-9904.	14.6	125
13	Synergistic anti-tumor effects of combined gemcitabine and cisplatin nanoparticles in a stroma-rich bladder carcinoma model. Journal of Controlled Release, 2014, 182, 90-96.	9.9	105
14	Amphiphilic and biodegradable methoxy polyethylene glycol-block-(polycaprolactone-graft-poly(2-(dimethylamino)ethyl methacrylate)) as an effective gene carrier. Biomaterials, 2011, 32, 879-889.	11.4	97
15	Poly(ε-caprolactone)-graft-poly(2-(N, N-dimethylamino) ethyl methacrylate) nanoparticles: pH dependent thermo-sensitive multifunctional carriers for gene and drug delivery. Journal of Materials Chemistry, 2010, 20, 6935.	6.7	92
16	Intracellular cleavable poly(2-dimethylaminoethyl methacrylate) functionalized mesoporous silica nanoparticles for efficient siRNA delivery in vitro and in vivo. Nanoscale, 2013, 5, 4291.	5.6	92
17	Ternary complexes of amphiphilic polycaprolactone-graft-poly (N,N-dimethylaminoethyl methacrylate), DNA and polyglutamic acid-graft-poly(ethylene glycol) for gene delivery. Biomaterials, 2011, 32, 4283-4292.	11.4	79
18	Phototriggered Local Anesthesia. Nano Letters, 2016, 16, 177-181.	9.1	78

SHUTAO GUO

#	Article	IF	CITATIONS
19	Gene transfection efficacy and biocompatibility of polycation/DNA complexes coated with enzyme degradable PEGylated hyaluronic acid. Biomaterials, 2013, 34, 6495-6503.	11.4	72
20	Unmodified drug used as a material to construct nanoparticles: delivery of cisplatin for enhanced anti-cancer therapy. Journal of Controlled Release, 2014, 174, 137-142.	9.9	71
	Amphiphilic Methoxy Poly(ethylene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 672 Td (glycol)- <i>b</i> -poly	(ε-caprol	actone)- <i>b</i>
21	Copolymer Nanoparticles as a Vector for Gene and Drug Delivery. Biomacromolecules, 2010, 11, 2306-2312	5.4	69
22	Improving the oral delivery efficiency of anticancer drugs by chitosan coated polycaprolactone-grafted hyaluronic acid nanoparticles. Journal of Materials Chemistry B, 2014, 2, 4021-4033.	5.8	64
23	Modular Acid-Activatable Acetone-Based Ketal-Linked Nanomedicine by Dexamethasone Prodrugs for Enhanced Anti-Rheumatoid Arthritis with Low Side Effects. Nano Letters, 2020, 20, 2558-2568.	9.1	64
24	Structural contributions of blocked or grafted poly(2-dimethylaminoethyl methacrylate) on PEGylated polycaprolactone nanoparticles in siRNA delivery. Biomaterials, 2011, 32, 8730-8742.	11.4	62
25	Treatment of otitis media by transtympanic delivery of antibiotics. Science Translational Medicine, 2016, 8, 356ra120.	12.4	61
26	Polycation-detachable nanoparticles self-assembled from mPEG-PCL-g-SS-PDMAEMA for in vitro and in vivo siRNA delivery. Acta Biomaterialia, 2013, 9, 7746-7757.	8.3	60
27	Binary and ternary complexes based on polycaprolactone-graft-poly (N, N-dimethylaminoethyl) Tj ETQq1 1 0.784	1314.rgBT 11.₽	/Overlock 10
28	Self-Propelled and Near-Infrared-Phototaxic Photosynthetic Bacteria as Photothermal Agents for Hypoxia-Targeted Cancer Therapy. ACS Nano, 2021, 15, 1100-1110.	14.6	48
29	Extended Release of Native Drug Conjugated in Polyketal Microparticles. Journal of the American Chemical Society, 2016, 138, 6127-6130.	13.7	41
30	Acid-sensitive PEGylated paclitaxel prodrug nanoparticles for cancer therapy: Effect of PEG length on antitumor efficacy. Journal of Controlled Release, 2020, 326, 265-275.	9.9	41
31	Dually Enzyme- and Acid-Triggered Self-Immolative Ketal Glycoside Nanoparticles for Effective Cancer Prodrug Monotherapy. Nano Letters, 2020, 20, 5465-5472.	9.1	37
32	Axial modification inhibited H-aggregation of phthalocyanines in polymeric micelles for enhanced PDT efficacy. Chemical Communications, 2018, 54, 3985-3988.	4.1	36
33	Contribution of hydrophobic/hydrophilic modification on cationic chains of poly(ε-caprolactone)-graft-poly(dimethylamino ethylmethacrylate) amphiphilic co-polymer in gene delivery. Acta Biomaterialia, 2014, 10, 670-679.	8.3	30
34	Carrier strategies boost the application of CRISPR/Cas system in gene therapy. Exploration, 2022, 2, .	11.0	30
35	Incorporation of histone derived recombinant protein for enhanced disassembly of core-membrane structured liposomal nanoparticles for efficient siRNA delivery. Journal of Controlled Release, 2013, 172, 179-189.	9.9	28
36	Acid-Triggered Release of Native Gemcitabine Conjugated in Polyketal Nanoparticles for Enhanced Anticancer Therapy. Biomacromolecules, 2020, 21, 803-814.	5.4	27

Shutao Guo

#	Article	IF	CITATIONS
37	Poly(<i>ε</i> â€caprolactone)â€ <i>graft</i> â€poly(2â€(dimethylamino)ethyl methacrylate) Amphiphilic Copolymers Prepared via a Combination of ROP and ATRP: Synthesis, Characterization, and Selfâ€Assembly Behavior. Macromolecular Chemistry and Physics, 2010, 211, 1572-1578.	2.2	26
38	Investigation on properties of P((MAA-co-DMAEMA)-g-EG) polyampholyte nanogels. Journal of Nanoparticle Research, 2009, 11, 365-374.	1.9	22
39	Turning a water and oil insoluble cisplatin derivative into a nanoparticle formulation for cancer therapy. Biomaterials, 2014, 35, 7647-7653.	11.4	22
40	Systemic and tumor-targeted delivery of siRNA by cyclic NGR and isoDGR motif-containing peptides. Biomaterials Science, 2016, 4, 494-510.	5.4	21
41	Synthesis of Poly(acyclic orthoester)s: Acidâ€Sensitive Biomaterials for Enhancing Immune Responses of Protein Vaccine. Angewandte Chemie - International Edition, 2020, 59, 7235-7239.	13.8	19
42	Thermoreversible gelation of poly(ethylene glycol)/poly(ester anhydride) triblock copolymer nanoparticles for injectable drug delivery systems. Soft Matter, 2010, 6, 1915.	2.7	18
43	Self-assembled cationic triblock copolymer mPEG-b-PDLLA-b-PDMA nanoparticles as nonviral gene vector. Soft Matter, 2012, 8, 2252.	2.7	16
44	Nanoparticulate Cancer-Starvation Therapy. CheM, 2017, 2, 168-170.	11.7	15
45	Acid-sensitive PEGylated cabazitaxel prodrugs for antitumor therapy. Chinese Chemical Letters, 2021, 32, 1751-1754.	9.0	15
46	Modular ketal-linked prodrugs and biomaterials enabled by organocatalytic transisopropenylation of alcohols. Nature Communications, 2021, 12, 5532.	12.8	15
47	Self-Assembly of Podophyllotoxin-Loaded Lipid Bilayer Nanoparticles for Highly Effective Chemotherapy and Immunotherapy via Downregulation of Programmed Cell Death Ligand 1 Production. ACS Nano, 2022, 16, 3943-3954.	14.6	14
48	Spatiotemporal Tracing of the Cellular Internalization Process of Rod-Shaped Nanostructures. ACS Nano, 2022, 16, 4059-4071.	14.6	12
49	Synthesis and properties of Polycaprolactoneâ€ <i>graft</i> â€poly(2â€(dimethylamino)ethyl) Tj ETQq1 1 0.7843 Polymers for Advanced Technologies, 2011, 22, 1925-1930.	14 rgBT /0 3.2	Overlock 10 T 11
50	Graphene Oxide/Chitosan/Hydroxyapatite Composite Membranes Enhance Osteoblast Adhesion and Guided Bone Regeneration. ACS Applied Bio Materials, 2021, 4, 8049-8059.	4.6	10
51	Intra-Articular injection of acid-sensitive stearoxyl-ketal-dexamethasone microcrystals for long-acting arthritis therapy. Asian Journal of Pharmaceutical Sciences, 2021, 16, 213-221.	9.1	7
52	Interaction kinetics of peptide lipids-mediated gene delivery. Journal of Nanobiotechnology, 2020, 18, 144.	9.1	6
53	Influences of the content of POA on the properties of poly(sebacic acid-octadecanic diacid) copolyanhydrides. Reactive and Functional Polymers, 2008, 68, 1415-1421.	4.1	4
54	Investigation on Injectable, Thermally and Physically Gelable Poly(Ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50	67 Td (Cl	ycol)/Poly(Oc

Biomaterials Science, Polymer Edition, 2012, 23, 465-482.

#	Article	IF	CITATIONS
55	Controlled Release of Paclitaxel from Amphiphilic Copolymer Hybrid Assembly Nanoparticles. Journal of Nanoscience and Nanotechnology, 2009, 9, 2030-2037.	0.9	3
56	Synthesis of Poly(acyclic orthoester)s: Acid‣ensitive Biomaterials for Enhancing Immune Responses of Protein Vaccine. Angewandte Chemie, 2020, 132, 7302-7306.	2.0	2