

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1277713/publications.pdf Version: 2024-02-01

HALL

#	Article	IF	CITATIONS
1	Physics-Based Models for Magneto-Electric Spin-Orbit Logic Circuits. IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, 2022, 8, 10-18.	1.5	4
2	Evaluating the Performances of the Ultralow Power Magnetoelectric Random Access Memory With a Physics-Based Compact Model of the Antiferromagnet/Ferromagnet Bilayer. IEEE Transactions on Electron Devices, 2022, 69, 2331-2337.	3.0	7
3	Gaussian Random Number Generator With Reconfigurable Mean and Variance Using Stochastic Magnetic Tunnel Junctions. IEEE Magnetics Letters, 2022, 13, 1-5.	1.1	1
4	Enabling ultra-low-voltage switching in BaTiO3. Nature Materials, 2022, 21, 779-785.	27.5	28
5	Differential Electrically Insulated Magnetoelectric Spin-Orbit Logic Circuits. IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, 2021, 7, 18-25.	1.5	7
6	Lowâ€Voltage Magnetoelectric Coupling in Fe _{0.5} Rh _{0.5} /0.68PbMg _{1/3} Nb _{2/3} O ₃ â€0.32PbT Thinâ€Film Heterostructures. Advanced Functional Materials, 2021, 31, 2105068.	iO<541/9>3	
7	Spin–Charge Interconversion in KTaO ₃ 2D Electron Gases. Advanced Materials, 2021, 33, e2102102.	21.0	27
8	Reliability Characterization for 12 V Application Using the 22FFL FinFET Technology. , 2020, , .		0
9	Convolution Inference via Synchronization of a Coupled CMOS Oscillator Array. IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, 2020, 6, 170-176.	1.5	11
10	Correcting Transition Curvature in Heat-Assisted Magnetic Recording. IEEE Transactions on Magnetics, 2017, 53, 1-7.	2.1	28
11	Write head field design for correcting transition curvature in heat assisted magnetic recording. AIP Advances, 2017, 7, .	1.3	9
12	Curvature-Eliminating Head Field and Track Edge Characteristics in Heat-Assisted Magnetic Recording. IEEE Transactions on Magnetics, 2017, 53, 1-4.	2.1	7
13	Distinguishing Random and Spatially Deterministic Noise Components in Heat-Assisted Magnetic Recording. IEEE Transactions on Magnetics, 2016, 52, 1-4.	2.1	2
14	Measuring Temperature Dependence of Anisotropy Field in Heat-Assisted Magnetic Recording Media by Pump–Probe Method. IEEE Transactions on Magnetics, 2016, 52, 1-4.	2.1	3
15	SNR Impact of Noise by Different Origins in FePt- <inline-formula> <tex-math notation="LaTeX">\$ext{L}1_{oldsymbol 0}\$ </tex-math </inline-formula> HAMR Media. IEEE Transactions on Magnetics, 2015, 51, 1-7.	2.1	4
16	Comparative study of micromagnetic modeling and experiment in heat-assisted magnetic recording. , 2015, , .		0
17	HAMR Noise Mechanism Study With Spin-Stand Testing. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	3
18	Medium optimization for lowering head field and heating requirements in heat-assisted magnetic recording. IEEE Magnetics Letters. 2015. 6. 1-4.	1.1	12

Hai Li

#	Article	IF	CITATIONS
19	Analysis of signal-to-noise ratio impact in heat assisted magnetic recording under insufficient head field. Journal of Applied Physics, 2015, 117, .	2.5	7
20	Signal-to-noise ratio impact of grain-to-grain heating variation in heat assisted magnetic recording. Journal of Applied Physics, 2014, 115, 17B747.	2.5	13
21	Understanding the impact of Tc and Hk variation on signal-to-noise ratio in heat-assisted magnetic recording. Journal of Applied Physics, 2014, 115, 178744.	2.5	16
22	Understanding Signal and Noise in Heat Assisted Magnetic Recording. IEEE Transactions on Magnetics, 2013, 49, 765-772.	2.1	95
23	The Role of Media Property Distribution in HAMR SNR. IEEE Transactions on Magnetics, 2013, 49, 3568-3571.	2.1	21