Raphaël Rodriguez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1277660/publications.pdf

Version: 2024-02-01

108046 87275 5,881 87 37 74 citations g-index h-index papers 111 111 111 7492 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Pharmacologic Reduction of Mitochondrial Iron Triggers a Noncanonical BAX/BAK-Dependent Cell Death. Cancer Discovery, 2022, 12, 774-791.	7.7	18
2	Targeting Cellular Iron Homeostasis with Ironomycin in Diffuse Large B-cell Lymphoma. Cancer Research, 2022, 82, 998-1012.	0.4	14
3	BMI1 nuclear location is critical for RAD51-dependent response to replication stress and drives chemoresistance in breast cancer stem cells. Cell Death and Disease, 2022, 13, 96.	2.7	13
4	Persister cancer cells: Iron addiction and vulnerability to ferroptosis. Molecular Cell, 2022, 82, 728-740.	4.5	92
5	Effects of iron modulation on mesenchymal stem cell-induced drug resistance in estrogen receptor-positive breast cancer. Oncogene, 2022, 41, 3705-3718.	2.6	19
6	Iron-Sensitive Prodrugs That Trigger Active Ferroptosis in Drug-Tolerant Pancreatic Cancer Cells. Journal of the American Chemical Society, 2022, 144, 11536-11545.	6.6	29
7	CD8+T cell responsiveness to anti-PD-1 is epigenetically regulated by Suv39h1 in melanomas. Nature Communications, 2022, 13, .	5.8	11
8	Inside Back Cover: Small Molecule Inhibitors of Interferonâ€Induced JAKâ€STAT Signalling (Angew. Chem.) Tj ETÇ	<u>)</u> q0,0 0 rg	BT Overlock I
9	Innenrù⁄4cktitelbild: Small Molecule Inhibitors of Interferonâ€Induced JAKâ€STAT Signalling (Angew. Chem.) Tj E	ТQ ₁ 1 1 0.	784314 rg <mark>BT</mark>
10	Small Molecule Regulators of Ferroptosis. Advances in Experimental Medicine and Biology, 2021, 1301, 81-121.	0.8	3
11	Chemistry and biology of ferritin. Metallomics, 2021, 13, .	1.0	83
12	Loss of SDHB Promotes Dysregulated Iron Homeostasis, Oxidative Stress, and Sensitivity to Ascorbate. Cancer Research, 2021, 81, 3480-3494.	0.4	26
13	Transcription/Replication Conflicts in Tumorigenesis and Their Potential Role as Novel Therapeutic Targets in Multiple Myeloma. Cancers, 2021, 13, 3755.	1.7	7
14	Imageâ€Based Morphological Profiling Identifies a Lysosomotropic, Ironâ€Sequestering Autophagy Inhibitor. Angewandte Chemie - International Edition, 2020, 59, 5721-5729.	7.2	41
15	CD44 regulates epigenetic plasticity by mediating iron endocytosis. Nature Chemistry, 2020, 12, 929-938.	6.6	132
16	Editorial overview: Toward smart medicines. Current Opinion in Chemical Biology, 2020, 56, A1-A2.	2.8	0
17	Imageâ€Based Morphological Profiling Identifies a Lysosomotropic, Ironâ€6equestering Autophagy Inhibitor. Angewandte Chemie, 2020, 132, 5770-5778.	1.6	11
18	DMT1 Inhibitors Kill Cancer Stem Cells by Blocking Lysosomal Iron Translocation. Chemistry - A European Journal, 2020, 26, 7369-7373.	1.7	61

#	Article	IF	CITATIONS
19	Salinomycin Derivatives Kill Breast Cancer Stem Cells by Lysosomal Iron Targeting. Chemistry - A European Journal, 2020, 26, 7416-7424.	1.7	57
20	Whole-genome mapping of small-molecule targets for cancer medicine. Current Opinion in Chemical Biology, 2020, 56, 42-50.	2.8	8
21	Centromere Dysfunction Compromises Mitotic Spindle Pole Integrity. Current Biology, 2019, 29, 3072-3080.e5.	1.8	23
22	From controlling chemical bonding to deciphering and manipulating biological processes. Bioorganic and Medicinal Chemistry, 2019, 27, 2281.	1.4	1
23	Diverse engineering. Nature Chemistry, 2019, 11, 499-500.	6.6	3
24	2nd PSL Chemical Biology Symposium (2019): At the Crossroads of Chemistry and Biology. ChemBioChem, 2019, 20, 968-973.	1.3	0
25	PH-domain-binding inhibitors of nucleotide exchange factor BRAG2 disrupt Arf GTPase signaling. Nature Chemical Biology, 2019, 15, 358-366.	3.9	22
26	PML-Regulated Mitochondrial Metabolism Enhances Chemosensitivity in Human Ovarian Cancers. Cell Metabolism, 2019, 29, 156-173.e10.	7.2	174
27	Ironomycin Induces Diffuse Large B-Cell Lymphoma Cell Death By Targeting Iron Metabolism Addiction. Blood, 2019, 134, 3960-3960.	0.6	0
28	Reprogramming the chemical reactivity of iron in cancer stem cells. Comptes Rendus Chimie, 2018, 21, 704-708.	0.2	1
29	Targeting of NAT10 enhances healthspan in a mouse model of human accelerated aging syndrome. Nature Communications, 2018, 9, 1700.	5. 8	103
30	Metformin reveals a mitochondrial copper addiction of mesenchymal cancer cells. PLoS ONE, 2018, 13, e0206764.	1.1	19
31	Chemical biology of salinomycin. Tetrahedron, 2018, 74, 5585-5614.	1.0	22
32	Visualizing biologically active small molecules in cells using click chemistry. Nature Reviews Chemistry, 2018, 2, 202-215.	13.8	133
33	Click Quantitative Mass Spectrometry Identifies PIWIL3 as a Mechanistic Target of RNA Interference Activator Enoxacin in Cancer Cells. Journal of the American Chemical Society, 2017, 139, 1400-1403.	6.6	27
34	Targeting Cancer Stem Cells with Small Molecules. Israel Journal of Chemistry, 2017, 57, 239-250.	1.0	19
35	Salinomycin kills cancer stem cells by sequestering iron in lysosomes. Nature Chemistry, 2017, 9, 1025-1033.	6.6	423
36	Chromatin Regulates Genome Targeting with Cisplatin. Angewandte Chemie, 2017, 129, 6583-6587.	1.6	3

#	Article	IF	CITATIONS
37	Chromatin Regulates Genome Targeting with Cisplatin. Angewandte Chemie - International Edition, 2017, 56, 6483-6487.	7.2	25
38	An iron hand over cancer stem cells. Autophagy, 2017, 13, 1465-1466.	4.3	43
39	Click chemistry enables preclinical evaluation of targeted epigenetic therapies. Science, 2017, 356, 1397-1401.	6.0	120
40	PSL Chemical Biology Symposia First 2016 Edition: When Chemistry and Biology Share the Language of Discovery. ChemBioChem, 2017, 18, 883-887.	1.3	1
41	Family-wide Analysis of the Inhibition of Arf Guanine Nucleotide Exchange Factors with Small Molecules: Evidence of Unique Inhibitory Profiles. Biochemistry, 2017, 56, 5125-5133.	1.2	25
42	Quinolizinium as a new fluorescent lysosomotropic probe. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 203-207.	1.0	22
43	Synthesis of marmycin A and investigation into its cellular activity. Nature Chemistry, 2015, 7, 744-751.	6.6	41
44	Synthesis of Unnatural Steroids Using the Bistro Strategy. Synlett, 2015, 26, 725-736.	1.0	5
45	Differential Targeting of Human Topoisomerase II Isoforms with Small Molecules. Journal of Medicinal Chemistry, 2015, 58, 4851-4856.	2.9	20
46	G-quadruplex interacting small molecules and drugs: from bench toward bedside. Expert Review of Clinical Pharmacology, 2014, 7, 663-679.	1.3	76
47	Modular Construction of Dynamic Nucleodendrimers. Angewandte Chemie - International Edition, 2014, 53, 4862-4866.	7.2	6
48	Chemical Inhibition of NAT10 Corrects Defects of Laminopathic Cells. Science, 2014, 344, 527-532.	6.0	265
49	Unravelling the genomic targets of small molecules using high-throughput sequencing. Nature Reviews Genetics, 2014, 15, 783-796.	7.7	80
50	Guanosine and isoguanosine derivatives for supramolecular devices. New Journal of Chemistry, 2014, 38, 5122-5128.	1.4	15
51	Targeting DNA Gâ€Quadruplexes with Helical Small Molecules. ChemBioChem, 2014, 15, 2563-2570.	1.3	31
52	Nucleotide Contributions to the Structural Integrity and DNA Replication Initiation Activity of Noncoding Y RNA. Biochemistry, 2014, 53, 5848-5863.	1.2	17
53	Biased and unbiased strategies to identify biologically active small molecules. Bioorganic and Medicinal Chemistry, 2014, 22, 4474-4489.	1.4	13
54	A Ray of Light Piercing through the Clouds The 49th EUCHEMS Conference on Stereochemistry Bürgenstock Conference 2014. Chimia, 2014, 68, 742.	0.3	0

#	Article	IF	Citations
55	Pyridostatin analogues promote telomere dysfunction and long-term growth inhibition in human cancer cells. Organic and Biomolecular Chemistry, 2012, 10, 6537.	1.5	109
56	Innentitelbild: Selective RNA Versus DNA G-Quadruplex Targeting by Inâ€Situ Click Chemistry (Angew.) Tj ETÇ	Qq0	BT /8verlock 1
57	Selective RNA Versus DNA Gâ€Quadruplex Targeting by Inâ€Situ Click Chemistry. Angewandte Chemie - International Edition, 2012, 51, 11073-11078.	7.2	144
58	Experimental approaches to identify cellular G-quadruplex structures and functions. Methods, 2012, 57, 84-92.	1.9	40
59	Small-molecule–induced DNA damage identifies alternative DNA structures in human genes. Nature Chemical Biology, 2012, 8, 301-310.	3.9	576
60	G-Quadruplex-Binding Benzo[<i>a</i>]phenoxazines Down-Regulate <i>c-KIT</i> Expression in Human Gastric Carcinoma Cells. Journal of the American Chemical Society, 2011, 133, 2658-2663.	6.6	139
61	The transcription factor FOXM1 is a cellular target of the natural product thiostrepton. Nature Chemistry, 2011, 3, 725-731.	6.6	223
62	A single-molecule platform for investigation of interactions between G-quadruplexes and small-molecule ligands. Nature Chemistry, 2011, 3, 782-787.	6.6	189
63	G-quadruplexes: selective DNA targeting for cancer therapeutics?. Expert Review of Clinical Pharmacology, 2011, 4, 139-142.	1.3	35
64	Small-molecule-mediated G-quadruplex isolation from human cells. Nature Chemistry, 2010, 2, 1095-1098.	6.6	166
65	Small molecule-mediated inhibition of translation by targeting a native RNA G-quadruplex. Organic and Biomolecular Chemistry, 2010, 8, 2771.	1.5	101
66	Stereoselective synthesis of CD-ring precursors of vitamin D derivatives. Tetrahedron, 2009, 65, 7001-7015.	1.0	24
67	Controlled-folding of a small molecule modulates DNA G-quadruplex recognition. Chemical Communications, 2009, , 80-82.	2,2	25
68	Exploring the Differential Recognition of DNA Gâ€Quadruplex Targets by Small Molecules Using Dynamic Combinatorial Chemistry. Angewandte Chemie - International Edition, 2008, 47, 2677-2680.	7.2	101
69	A Novel Small Molecule That Alters Shelterin Integrity and Triggers a DNA-Damage Response at Telomeres. Journal of the American Chemical Society, 2008, 130, 15758-15759.	6.6	390
70	Triarylpyridines: a versatile small molecule scaffold for G-quadruplex recognition. Chemical Communications, 2008, , 1467.	2.2	74
71	Biomimetic Synthesis of Pyrone-Derived Natural Products: Exploring Chemical Pathways from a Unique Polyketide Precursor. Journal of Organic Chemistry, 2008, 73, 4830-4839.	1.7	49
72	Selective Recognition of a DNA G-Quadruplex by an Engineered Antibody. Biochemistry, 2008, 47, 9365-9371.	1.2	62

#	Article	IF	CITATIONS
73	Trisubstituted Isoalloxazines as a New Class of G-Quadruplex Binding Ligands:  Small Molecule Regulation of c-kit Oncogene Expression. Journal of the American Chemical Society, 2007, 129, 12926-12927.	6.6	240
74	Ligand-Driven G-Quadruplex Conformational Switching By Using an Unusual Mode of Interaction. Angewandte Chemie - International Edition, 2007, 46, 5405-5407.	7.2	122
75	Total synthesis of cyercene A and the biomimetic synthesis of $(\hat{A}\pm)$ -9,10-deoxytridachione and $(\hat{A}\pm)$ -ocellapyrone A. Tetrahedron, 2007, 63, 4500-4509.	1.0	31
76	Enantioselective synthesis of steroids. Tetrahedron, 2007, 63, 11511-11616.	1.0	99
77	Oxazole-Based Peptide Macrocycles:Â A New Class of G-Quadruplex Binding Ligands. Journal of the American Chemical Society, 2006, 128, 13662-13663.	6.6	122
78	Tetramethylpyridiniumporphyrazines—a new class of G-quadruplex inducing and stabilising ligands. Chemical Communications, 2006, , 4685-4687.	2.2	120
79	Desymmetrization of theanti-meso-Acetylmethyldivinylcyclopentane by ÂDirected Epoxidation and its Application to the Synthesis of a ÂPolyfunctionalizedtrans-Hydrindane Unit. Synlett, 2006, 2006, 312-314.	1.0	0
80	A new and efficient method for o-quinone methide intermediate generation: application to the biomimetic synthesis of the benzopyran derived natural products $(\hat{A}\pm)$ -lucidene and $(\hat{A}\pm)$ -alboatrin. Organic and Biomolecular Chemistry, 2005, 3, 3488.	1.5	50
81	Biomimetic synthesis of $(\hat{A}\pm)$ -9,10-deoxytridachione. Chemical Communications, 2005, , 1687-1689.	2.2	35
82	Vitamin D: a concise synthesis of the C19 hydroxylated enyne A-ring, an interesting precursor for the preparation of C19 substituted vitamin D analogues. Tetrahedron Letters, 2004, 45, 2289-2292.	0.7	9
83	A New and Efficient Method for o-Quinone Methide Intermediate Generation:  Application to the Biomimetic Synthesis of (±)-Alboatrin. Organic Letters, 2004, 6, 3617-3619.	2.4	71
84	Expeditive Synthesis of Potent C20-epi-Amino Derivatives of Salinomycin against Cancer Stem-Like Cells. ACS Organic & Inorganic Au, 0, , .	1.9	2
85	Rapid Access to Ironomycin Derivatives by Click Chemistry. ACS Organic & Inorganic Au, 0, , .	1.9	1
86	Small Molecule Inhibitors of Interferonâ€Induced JAKâ€STAT Signalling. Angewandte Chemie, 0, , .	1.6	0
87	Small Molecule Inhibitors of Interferonâ€Induced JAKâ€STAT Signalling. Angewandte Chemie - International Edition, 0, , .	7.2	5