Anthony Peaker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1277198/publications.pdf

Version: 2024-02-01

232 4,130 33
papers citations h-index

33 53
h-index g-index

232 2039

168136

citing authors

232 all docs

232 docs citations

times ranked

126708

#	Article	IF	CITATIONS
1	Electronic Properties and Structure of Boron–Hydrogen Complexes in Crystalline Silicon. Solar Rrl, 2022, 6, 2100459.	3.1	7
2	Dynamics of Hydrogen in Silicon at Finite Temperatures from First Principles. Physica Status Solidi (B): Basic Research, 2022, 259, .	0.7	7
3	Interactions of Hydrogen Atoms with Acceptor–Dioxygen Complexes in Czochralskiâ€Grown Silicon. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, .	0.8	2
4	On the Correlation between Light-Induced Degradation and Minority Carrier Traps in Boron-Doped Czochralski Silicon. ACS Applied Materials & Enterfaces, 2021, 13, 6140-6146.	4.0	3
5	Electrical Characterization of Thermally Activated Defects in n-Type Float-Zone Silicon. IEEE Journal of Photovoltaics, 2021, 11, 26-35.	1.5	8
6	Passivation of thermally-induced defects with hydrogen in float-zone silicon. Journal Physics D: Applied Physics, 2021, 54, 275105.	1.3	6
7	Acceptor-oxygen defects in silicon: The electronic properties of centers formed by boron, gallium, indium, and aluminum interactions with the oxygen dimer. Journal of Applied Physics, 2021, 130, 245703.	1.1	5
8	Kinetics of Bulk Lifetime Degradation in Floatâ€Zone Silicon: Fast Activation and Annihilation of Grownâ€In Defects and the Role of Hydrogen versus Light. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000436.	0.8	12
9	Characterisation of negative-U defects in semiconductors. Journal of Physics Condensed Matter, 2020, 32, 323001.	0.7	19
10	Minority carrier traps in Czochralski-grown p-type silicon crystals doped with B, Al, Ga, or In impurity atoms. , 2020, , .		0
11	Boron–Oxygen Complex Responsible for Lightâ€Induced Degradation in Silicon Photovoltaic Cells: A New Insight into the Problem. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900315.	0.8	23
12	New insights into the thermally activated defects in n-type float-zone silicon. AIP Conference Proceedings, 2019, , .	0.3	13
13	Identification of the mechanism responsible for the boron oxygen light induced degradation in silicon photovoltaic cells. Journal of Applied Physics, 2019, 125, .	1.1	36
14	Evidence for Molybdenumâ€Hydrogen Bonding in pâ€Type Silicon upon Annealing under Illumination. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800611.	0.8	3
15	Interaction of Radiationâ€Induced Selfâ€Interstitials with Vacancyâ€Oxygen Related Defects V n O 2 (n from) Tj	ETQg1 1 (0.7 <mark>8</mark> 4314 rgB
16	Tutorial: Junction spectroscopy techniques and deep-level defects in semiconductors. Journal of Applied Physics, 2018, 123, .	1.1	82
17	Lifetime degradation of n-type Czochralski silicon after hydrogenation. Journal of Applied Physics, 2018, 123, .	1.1	4
18	Acceptor levels of the carbon vacancy in 4H-SiC: Combining Laplace deep level transient spectroscopy with density functional modeling. Journal of Applied Physics, 2018, 124, 245701.	1.1	19

#	Article	IF	Citations
19	Electron emission and capture by oxygen-related bistable thermal double donors in silicon studied with junction capacitance techniques. Journal of Applied Physics, 2018, 124, .	1.1	14
20	Thermally activated defects in float zone silicon: Effect of nitrogen on the introduction of deep level states. Journal of Applied Physics, 2018, 124, .	1.1	19
21	Radiationâ€induced interstitial carbon atom in silicon: Effect of charge state on annealing characteristics. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700262.	0.8	5
22	Vanadium in silicon: Lattice positions and electronic properties. Applied Physics Letters, 2017, 110, 142105.	1.5	4
23	Recombination via transition metals in solar silicon: The significance of hydrogen–metal reactions and lattice sites of metal atoms. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700304.	0.8	11
24	Theory of a carbonâ€oxygenâ€hydrogen recombination center in nâ€type Si. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700309.	0.8	6
25	Powerful recombination centers resulting from reactions of hydrogen with carbon–oxygen defects in nâ€type Czochralskiâ€grown silicon. Physica Status Solidi - Rapid Research Letters, 2017, 11, 1700133.	1.2	13
26	The diâ€interstitial in silicon: Electronic properties and interactions with oxygen and carbon impurity atoms. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700261.	0.8	6
27	Permanent annihilation of thermally activated defects which limit the lifetime of floatâ€zone silicon. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2844-2849.	0.8	69
28	Interactions of hydrogen with vanadium in crystalline silicon. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2838-2843.	0.8	6
29	Local vibrational modes of interstitial boron–interstitial oxygen complex in silicon. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2850-2854.	0.8	5
30	Recombination centers resulting from reactions of hydrogen and oxygen in n-type Czochralski silicon. , $2016, \ldots$		4
31	Exceptional gettering response of epitaxially grown kerfless silicon. Journal of Applied Physics, 2016, 119, .	1.1	9
32	Gettering of interstitial iron in silicon by plasma-enhanced chemical vapour deposited silicon nitride films. Journal of Applied Physics, 2016, 120, .	1.1	52
33	Thermal activation and deactivation of grownâ€in defects limiting the lifetime of floatâ€zone silicon. Physica Status Solidi - Rapid Research Letters, 2016, 10, 443-447.	1.2	82
34	Electrical and Optical Defect Evaluation Techniques for Electronic and Solar Grade Silicon. Lecture Notes in Physics, 2015, , 129-180.	0.3	2
35	Evidence for an iron-hydrogen complex in p-type silicon. Applied Physics Letters, 2015, 107, .	1.5	19
36	Nano-precipitates … a new recombination model. , 2015, , .		O

#	Article	IF	Citations
37	Molybdenum nano-precipitates in silicon: A TEM and DLTS study. Physica Status Solidi (B): Basic Research, 2014, 251, 2201-2204.	0.7	7
38	Donor levels of the divacancy-oxygen defect in silicon. Journal of Applied Physics, 2014, 115, 012004.	1.1	13
39	Titanium in silicon: Lattice positions and electronic properties. Applied Physics Letters, 2014, 104, 152105.	1.5	20
40	E 1/ E 2 traps in 6H-SiC studied with Laplace deep level transient spectroscopy. Applied Physics Letters, 2013, 102, .	1.5	12
41	Passivation of titanium by hydrogen in silicon. Applied Physics Letters, 2013, 103, 132103.	1.5	19
42	Recombination via point defects and their complexes in solar silicon. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 1884-1893.	0.8	42
43	Back Cover: Recombination via point defects and their complexes in solar silicon (Phys. Status Solidi A) Tj ETQq1	1 0.7843	14 rgBT /Ove
44	Reconfigurations and diffusion of trivacancy in silicon. Physica B: Condensed Matter, 2012, 407, 2974-2977.	1.3	2
45	Laplace deep level transient spectroscopy: Embodiment and evolution. Physica B: Condensed Matter, 2012, 407, 3026-3030.	1.3	13
46	Electronic and dynamical properties of the silicon trivacancy. Physical Review B, 2012, 86, .	1.1	35
47	Electrical characteristics of InAs self-assembled quantum dots embedded in GaAs using admittance spectroscopy. Journal of Nanophotonics, 2012, 6, 013502.	0.4	1
48	Temperature and frequency dependent admittance of InAs self-assembled quantum dots embedded in GaAs. , 2011, , .		0
49	Tin-vacancy complex in germanium. Journal of Applied Physics, 2011, 109, .	1.1	27
50	Structure and electronic properties of trivacancy and trivacancy-oxygen complexes in silicon. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 568-571.	0.8	31
51	Local vibrational modes of the oxygen trimer in Si. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 709-712.	0.8	5
52	The oxygen dimer in Si: Its relationship to the light-induced degradation of Si solar cells?. Applied Physics Letters, 2011, 98, .	1.5	45
53	Laplace-Transform Deep-Level Spectroscopy Characterization of the Intrinsic and Deep-Level States in Self-Assembled InAs Quantum-Dot Structures. , 2010 , , .		1
54	Electric-Field Dependence of Electron Emission from InAsâ^•GaAs Quantum Dots., 2010,,.		0

#	Article	IF	Citations
55	Breakdown and degradation of ultrathin Hf-based (HfO[sub 2])[sub x](SiO[sub 2])[sub 1â^'x] gate oxide films. Journal of Vacuum Science & Technology B, 2009, 27, 443.	1.3	16
56	Interactions of Cu and Ni Impurities with Vacancy-related Point Defects in Czochralski-grown Si Crystals. ECS Transactions, 2009, 18, 1013-1018.	0.3	5
57	Comprehensive study of InAs/GaAs quantum dots by means of complementary methods. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2009, 165, 98-102.	1.7	1
58	Energy state distributions at oxide–semiconductor interfaces investigated by Laplace DLTS. Physica B: Condensed Matter, 2009, 404, 4604-4607.	1.3	1
59	Trivacancy in silicon: A combined DLTS and ab-initio modeling study. Physica B: Condensed Matter, 2009, 404, 4565-4567.	1.3	8
60	Relation between photocurrent and DLTS signals observed for quantum dot systems. Physica B: Condensed Matter, 2009, 404, 5170-5172.	1.3	0
61	Defect-impurity complexes with high thermal stability in epi-Si n+-p diodes irradiated with MeV electrons. Vacuum, 2009, 83, S131-S133.	1.6	1
62	Neutron-irradiation-induced defects in germanium: A Laplace deep level transient spectroscopy study. Vacuum, 2009, 84, 32-36.	1.6	1
63	Interstitial-related defect reactions in electron-irradiated oxygen-rich Ge crystals: A DLTS study. Physica B: Condensed Matter, 2009, 404, 4533-4536.	1.3	4
64	Trivacancy and trivacancy-oxygen complexes in silicon: Experiments andab initiomodeling. Physical Review B, 2009, 80, .	1.1	55
65	Formation of Hydrogen-Related Shallow Donors in Ge _{1-x} Si _x Crystals Implanted with Protons. Solid State Phenomena, 2008, 131-133, 131-136.	0.3	1
66	Radiation-Induced Defect Reactions in Cz-Si Crystals Contaminated with Cu. Solid State Phenomena, 2008, 131-133, 363-368.	0.3	13
67	Reliability degradation of thin HfO2/SiO2 gate stacks by remote RF hydrogen and deuterium plasma treatment. Thin Solid Films, 2008, 517, 207-208.	0.8	10
68	Piezospectroscopic analysis of mobile defects in semiconducting materials. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 529-534.	0.8	0
69	Nanoscale electrical characterization of ultrathin high-k dielectric MOS stacks: A conducting AFM study. Materials Science in Semiconductor Processing, 2008, 11, 250-253.	1.9	3
70	Implantation defects and n-type doping in Ge and Ge rich SiGe. Thin Solid Films, 2008, 517, 152-154.	0.8	17
71	Electrically active hydrogen-implantation-induced defects in Ge crystals and SiGe alloys. Thin Solid Films, 2008, 517, 419-421.	0.8	3
72	Electrically active defects induced by hydrogen and helium implantations in Ge. Materials Science in Semiconductor Processing, 2008, 11, 354-359.	1.9	4

#	Article	IF	Citations
73	Bistability of hydrogen donors in proton-implanted GeSi alloy. Technical Physics Letters, 2008, 34, 498-499.	0.2	1
74	Stress-Induced Positive Charge in Hf-Based Gate Dielectrics: Impact on Device Performance and a Framework for the Defect. IEEE Transactions on Electron Devices, 2008, 55, 1647-1656.	1.6	44
75	Energy state distributions of the Pb centers at the (100), (110), and (111) Si∕SiO2 interfaces investigated by Laplace deep level transient spectroscopy. Applied Physics Letters, 2008, 92, .	1.5	25
76	Four Case Studies of Adapting Enquiry-Based Learning (EBL) in Electrical and Electronic Engineering. International Journal of Electrical Engineering and Education, 2008, 45, 121-130.	0.4	7
77	Photovoltaic Power Generation: The Impact of Nano-Materials. Materials Science Forum, 2008, 608, 181-200.	0.3	2
78	Post-stress/breakdown leakage mechanism in ultrathin high- \hat{l}° (HfO ₂) ₂) ₂ SiO ₂) _{1-x} SiO ₂ gate stacks: A nanoscale conductive-Atomic Force Microscopy C-AFM. Materials Research Society Symposia Proceedings, 2008, 1108, 1.	0.1	0
79	Impact of different defects on the kinetics of negative bias temperature instability of hafnium stacks. Applied Physics Letters, 2008, 92, 013501.	1.5	9
80	Process-induced positive charges in Hf-based gate stacks. Journal of Applied Physics, 2008, 103, 014507.	1.1	8
81	Formation of interstitial carbon–interstitial oxygen complexes in silicon: Local vibrational mode spectroscopy and density functional theory. Physical Review B, 2008, 78, .	1.1	23
82	Evolution of vacancy-related defects upon annealing of ion-implanted germanium. Physical Review B, 2008, 78, .	1.1	22
83	Hole-Related Electrical Activity of InAs/GaAs Quantum Dots. Acta Physica Polonica A, 2008, 114, 1201-1206.	0.2	1
84	Alloy shift of "no-germanium―iron-related electronic levels in unstrained silicon-germanium alloys. Physical Review B, 2007, 76, .	1.1	2
85	Extrinsic stacking fault generation related to high–k dielectric growth on a Si substrate. Microelectronic Engineering, 2007, 84, 2374-2377.	1.1	0
86	Hydrogen induced positive charge in Hf-based dielectrics. Microelectronic Engineering, 2007, 84, 2354-2357.	1.1	5
87	Reliability nano-characterization of thin SiO2 and HfSixOy/SiO2 gate stacks. Microelectronic Engineering, 2007, 84, 2290-2293.	1.1	13
88	Iron-aluminium pair reconfiguration processes in SiGe alloys. Journal of Materials Science: Materials in Electronics, 2007, 18, 759-762.	1.1	5
89	Defects and Diffusion in SiGe and Strained Si. , 2007, , .		0
90	Germanium … The Semiconductor of Tomorrow?. AIP Conference Proceedings, 2006, , .	0.3	4

#	Article	IF	Citations
91	Determination of interstitial oxygen concentration in germanium by infrared absorption. Journal of Applied Physics, 2006, 100, 033525.	1.1	14
92	Combined optical and electrical studies of the effects of annealing on the intrinsic states and deep levels in a self-assembled InAs quantum-dot structure. Journal of Applied Physics, 2006, 100, 043703.	1.1	7
93	Laplace DLTS studies on deep levels coexisted with InAs quantum dots. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 3844-3847.	0.8	1
94	Carrier emission from the electronic states of self-assembled indium arsenide quantum dots. Materials Science and Engineering C, 2006, 26, 760-765.	3.8	7
95	Oxygen loss and thermal double donor formation in germanium. Materials Science in Semiconductor Processing, 2006, 9, 619-624.	1.9	3
96	Divacancy-related complexes in $Si(1\hat{a}^*x)Ge(x)$. Materials Science in Semiconductor Processing, 2006, 9, 525-530.	1.9	2
97	Defects induced by irradiation with fast neutrons in n-type germanium. Materials Science in Semiconductor Processing, 2006, 9, 606-612.	1.9	2
98	Interaction of self-interstitials with oxygen-related defects in electron-irradiated Ge crystals. Materials Science in Semiconductor Processing, 2006, 9, 613-618.	1.9	5
99	Interaction of iron with the local environment inSiGealloys investigated with Laplace transform deep level spectroscopy. Physical Review B, 2006, 74, .	1.1	14
100	Antibonding configurations of hydrogen in silicon-germanium alloys. Physical Review B, 2006, 73, .	1.1	10
101	Electrical activity of thePtH2complex in silicon: High-resolution Laplace deep-level transient spectroscopy and uniaxial-stress technique. Physical Review B, 2006, 73, .	1.1	6
102	The impact of negative-bias-temperature-instability on the carrier generation lifetime of metal-oxynitride-silicon capacitors. Journal of Applied Physics, 2006, 100, 124103.	1.1	23
103	Understanding Ion Implantation Defects in Germanium. ECS Transactions, 2006, 3, 67-76.	0.3	7
104	VO _n (n≥3) Defects in Irradiated and Heat-Treated Silicon. Solid State Phenomena, 2005, 108-109, 267-272.	0.3	34
105	Erbium in Semiconductors: Where are we coming from; Where are we going?. Materials Research Society Symposia Proceedings, 2005, 866, 19.	0.1	5
106	Electronic Properties and Thermal Stability of Defects Induced by MeV Electron/Ion Irradiations in Unstrained Germanium and SiGe Alloys. Solid State Phenomena, 2005, 108-109, 253-260.	0.3	6
107	Electronic Properties and Structure of a Complex Incorporating a Self-Interstitial and two Oxygen Atoms in Silicon. Solid State Phenomena, 2005, 108-109, 273-278.	0.3	10
108	The vacancy–donor pair in unstrained silicon, germanium and SiGe alloys. Journal of Physics Condensed Matter, 2005, 17, S2293-S2302.	0.7	17

#	Article	IF	CITATIONS
109	Vacancy-related complexes in neutron-irradiated silicon. Journal of Physics Condensed Matter, 2005, 17, S2229-S2235.	0.7	14
110	Local modes of bond-centered hydrogen in Si:Ge and Ge:Si. Physical Review B, 2005, 71, .	1.1	15
111	Stable and metastable configurations of iron atoms in SiGe alloys. Journal of Physics Condensed Matter, 2005, 17, S2267-S2272.	0.7	6
112	Coexistence of deep levels with optically active InAs quantum dots. Physical Review B, 2005, 72, .	1.1	47
113	Hot-carrier degradation characteristics and explanation in 0.25 μm PMOSFETs. Chinese Physics B, 2005, 14, 1644-1648.	1.3	14
114	Interstitial Carbon Related Defects in Low-Temperature Irradiated Si: FTIR and DLTS Studies. Solid State Phenomena, 2005, 108-109, 261-266.	0.3	14
115	Electrically active radiation-induced defects in Czochralski-grown Si with low carbon content. Journal of Physics Condensed Matter, 2005, 17, S2331-S2340.	0.7	16
116	Publisher's Note: Donor level of bond-center hydrogen in germanium [Phys. Rev. B69, 245207 (2004)]. Physical Review B, 2004, 70, .	1.1	7
117	Donor level of bond-center hydrogen in germanium. Physical Review B, 2004, 69, .	1.1	34
118	Electronic properties of antimony-vacancy complex in Ge crystals. Journal of Applied Physics, 2004, 95, 4078-4083.	1.1	77
119	Negative-bias-temperature-instability in metal–insulator–semiconductor structures. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 109, 127-130.	1.7	0
120	Recombination and radiation damage in crystalline silicon solar cell material. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 2274-2281.	0.8	2
121	Vacancy–group-V-impurity atom pairs in Ge crystals doped with P, As, Sb, and Bi. Physical Review B, 2004, 70, .	1.1	108
122	Electrically active defects induced by sputtering deposition on silicon: The role of hydrogen. Journal of Applied Physics, 2004, 95, 4752-4760.	1.1	15
123	Structure and properties of vacancy-oxygen complexes inSi1â^'xGexalloys. Physical Review B, 2004, 69, .	1.1	42
124	Laplace-transform deep-level spectroscopy: The technique and its applications to the study of point defects in semiconductors. Journal of Applied Physics, 2004, 96, 4689-4728.	1.1	270
125	Hole trapping in self-assembled SiGe quantum nanostructures. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2003, 101, 338-344.	1.7	6
126	Defect-impurity interactions in irradiated tin-doped Cz-Si crystals. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 694-697.	0.8	13

#	Article	IF	CITATIONS
127	Radiation-induced defects and their transformations in oxygen-rich germanium crystals. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 702-706.	0.8	23
128	Saddle point for oxygen reorientation in the vicinity of a silicon vacancy. Physical Review B, 2003, 67, .	1.1	13
129	Effect of stress on the energy levels of the vacancy-oxygen-hydrogen complex in Si. Physical Review B, 2003, 68, .	1.1	27
130	Defect reactions associated with divacancy elimination in silicon. Journal of Physics Condensed Matter, 2003, 15, S2779-S2789.	0.7	52
131	Vacancy–oxygen complex in Si1â^'xGex crystals. Applied Physics Letters, 2003, 82, 2652-2654.	1.5	22
132	Oxygen-related radiation-induced defects in SiGe alloys. Journal of Physics Condensed Matter, 2003, 15, S2835-S2842.	0.7	8
133	Unidirectional electron flow in a nanometer-scale semiconductor channel: A self-switching device. Applied Physics Letters, 2003, 83, 1881-1883.	1.5	206
134	Bond-center hydrogen in diluteSi1â^'xGexalloys: Laplace deep-level transient spectroscopy. Physical Review B, 2003, 68, .	1.1	17
135	Electrical activity of carbon-hydrogen centers in Si. Physical Review B, 2002, 66, .	1.1	37
136	Piezoscopic deep-level transient spectroscopy studies of the silicon divacancy. Physical Review B, 2002, 65, .	1.1	19
137	Electronic properties of vacancy–oxygen complex in Ge crystals. Applied Physics Letters, 2002, 81, 1821-1823.	1.5	68
138	Incorporation and optical activation of erbium in strained silicon–germanium structures. Solid-State Electronics, 2001, 45, 1927-1930.	0.8	1
139	The use of electron back-scattered diffraction to study the regrowth of amorphised silicon-based heterostructures. Materials Science in Semiconductor Processing, 2001, 4, 121-123.	1.9	4
140	Separation of dislocation- and erbium-related photoluminescence by time resolved studies. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 81, 56-58.	1.7	0
141	A comparison of the photoluminescence decay of erbium in silicon and silicon-germanium. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 81, 164-166.	1.7	6
142	High resolution DLTS of hydrogen reactions with defects in erbium-implanted silicon. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 81, 77-79.	1.7	1
143	Effect of dislocations on the photoluminescence decay of 1.54 \hat{l} /4m emission from erbium-doped silicon. Journal of Applied Physics, 2001, 89, 2715-2719.	1.1	6
144	High-resolution deep-level transient spectroscopy studies of gold and platinum acceptor states in diluted SiGe alloys. Physical Review B, 2001, 63, .	1.1	17

#	Article	lF	Citations
145	Vacancy-related defects in ion implanted and electron irradiated silicon. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 71, 143-147.	1.7	7
146	High-resolution DLTS studies of vacancy-related defects in irradiated and in ion-implanted n-type silicon. Materials Science in Semiconductor Processing, 2000, 3, 237-241.	1.9	14
147	Erbium-doped Si1-xGex/Si structures for light emitting diodes. Semiconductor Science and Technology, 2000, 15, 91-97.	1.0	10
148	Alloy Splitting of Gold and Platinum Acceptor Levels in SiGe. Physical Review Letters, 1999, 83, 4582-4585.	2.9	21
149	Gold–hydrogen complexes in silicon. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1999, 58, 126-129.	1.7	19
150	Luminescence from erbium implanted silicon–germanium quantum wells. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1998, 16, 2928.	1.6	10
151	Laplace-transform deep-level transient spectroscopy studies of the G4 gold–hydrogen complex in silicon. Applied Physics Letters, 1998, 73, 3126-3128.	1.5	31
152	Magnetic characterization of self-organized ErAs clusters using telegraph noise spectroscopy. Physical Review B, 1998, 57, 7182-7189.	1.1	12
153	Light emission in silicon-germanium at $1.54\hat{l}$ 4m using erbium luminescence. , $1998,3465,357.$		0
154	Light Emission From Erbium Doped Si1-x XGe1Heterostructures. Materials Research Society Symposia Proceedings, 1998, 533, 133.	0.1	1
155	Luminescence Decay of the 1.54 \hat{l} 4m Emission from Erbium in Silicon. Materials Research Society Symposia Proceedings, 1996, 422, 119.	0.1	4
156	Properties and Growth of MBE Grown Erbium Doped Gallium Arsenide Co-Doped with Selenium. Materials Research Society Symposia Proceedings, 1996, 422, 35.	0.1	1
157	Laplace transform deep level transient spectroscopy: new insight into defect microscopy. Materials Science and Technology, 1995, 11, 1071-1073.	0.8	2
158	Recombination at Oxidation Induced Stacking Faults in Silicon. Materials Research Society Symposia Proceedings, 1995, 378, 995.	0.1	1
159	Non-Radiative Competition in the Excitation of Erbium Implanted Silicon Light Emitting Devices. Materials Research Society Symposia Proceedings, 1995, 392, 223.	0.1	7
160	Deep states associated with oxidation induced stacking faults in RTA p-type silicon before and after copper diffusion. Solid-State Electronics, 1995, 38, 1025-1034.	0.8	12
161	Single Domain Switching Investigated Using Telegraph Noise Spectroscopy: Possible Evidence for Macroscopic Quantum Tunneling. Physical Review Letters, 1995, 75, 3513-3516.	2.9	37
162	Structure of the DX state formed by donors in (Al, Ga) As and Ga(As, P). Journal of Applied Physics, 1995, 78, 2468-2477.	1.1	30

#	Article	IF	Citations
163	Sharp 1.54 µm luminescence from porous erbium implanted silicon. Electronics Letters, 1995, 31, 2132-2133.	0.5	17
164	Selfâ€organizing growth of erbium arsenide quantum dots and wires in gallium arsenide by molecular beam epitaxy. Applied Physics Letters, 1994, 64, 707-709.	1.5	43
165	Light-beam-induced transient spectroscopy of oxidation-induced stacking faults in silicon. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1994, 24, 167-169.	1.7	1
166	Optical characterization of deep states associated with oxidation-induced stacking faults in silicon. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1994, 24, 170-174.	1.7	0
167	Characterization of Si/Si1â^'xGex/Si heterostructures by capacitanceâ€transient spectroscopy. Journal of Applied Physics, 1994, 76, 4237-4243.	1.1	11
168	Laplace transform deepâ€level transient spectroscopic studies of defects in semiconductors. Journal of Applied Physics, 1994, 76, 194-198.	1.1	176
169	Non-destructive identification of end-of-range damage in ion-implanted and annealed silicon. Applied Surface Science, 1993, 63, 227-231.	3.1	9
170	The impact of lattice dilation on deep states in MBE GaAs. Journal of Crystal Growth, 1993, 127, 703-706.	0.7	3
171	Optical properties of dislocations in silicon crystals. Physica Status Solidi A, 1993, 138, 681-686.	1.7	17
172	The determination of valence band discontinuities and interface charge densities in Si/Si1-yGey/Si heterojunctions. Semiconductor Science and Technology, 1993, 8, 1487-1489.	1.0	14
173	Recombination processes in erbium-doped MBE silicon. Semiconductor Science and Technology, 1993, 8, 236-242.	1.0	68
174	Correlation between optical spectroscopy and capacitanceâ€voltage profile simulation applied to interface states in multilayer GaAs/AlGaAs heterostructures. Journal of Applied Physics, 1993, 73, 5032-5037.	1,1	5
175	Lowâ€ŧemperature decay of photocapacitance caused by Snâ€relatedDXcenters in AlxGa1â^'xAs. Applied Physics Letters, 1993, 62, 1393-1395.	1.5	4
176	Temperature dependence of the Schottky barrier in Al/AlGaAs metalâ€semiconductor junctions. Journal of Applied Physics, 1993, 74, 416-425.	1.1	36
177	The determination of valence band discontinuities in Si/Si1â^'xGex/Si heterojunctions by capacitanceâ€voltage techniques. Journal of Applied Physics, 1993, 74, 1894-1899.	1.1	34
178	Erbium Doped Gallium Arsenide a Self-Organising Low Dimensional System. Materials Research Society Symposia Proceedings, 1993, 301, 337.	0.1	2
179	MBE Grown GaSb, AlSb Crystals High Pressure Electrical Characterisation. Japanese Journal of Applied Physics, 1993, 32, 261.	0.8	2
180	Electrical Properties of Oxidation-Induced Stacking Faults in N-Type Silicon. Materials Science Forum, 1992, 83-87, 1463-1468.	0.3	1

#	Article	IF	Citations
181	Recombination-generation behaviour of decorated defects in silicon. Semiconductor Science and Technology, 1992, 7, A263-A268.	1.0	18
182	Hole capture at the DX(Si) and DX(Te) defects in AlxGalâ^'xAs. Journal of Applied Physics, 1992, 72, 3198-3200.	1.1	17
183	Evidence for substitutional-interstitial defect motion leading toDXbehavior by donors inAlxGa1â°'xAs. Physical Review Letters, 1992, 68, 2508-2511.	2.9	62
184	Deep levels associated with oxidation induced stacking faults innâ€type silicon. Applied Physics Letters, 1992, 60, 359-361.	1.5	28
185	The electrical assessment of p-isotype Si/SiGe/Si heterostructures grown by MBE. Thin Solid Films, 1992, 222, 116-119.	0.8	5
186	Growth and structural characterization of molecular beam epitaxial erbium-doped GaAs. Journal of Crystal Growth, 1992, 121, 121-131.	0.7	58
187	Minority-carrier confinement by doping barriers. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1991, 9, 375-378.	1.7	5
188	A new, fast method for the computer simulation of CV profiles in multilayer structures. Applied Surface Science, 1991, 50, 149-153.	3.1	5
189	Entropy-Driven Metastable Defects in Silicon. Materials Science Forum, 1991, 38-41, 499-504.	0.3	0
190	A Novel Approach to the Assessment of Semiconductor Hetero-Interfaces in Multilayer Structures. Materials Research Society Symposia Proceedings, 1990, 198, 389.	0.1	2
191	Deep donors in GaSb grown by molecular beam epitaxy. Applied Physics Letters, 1990, 57, 1645-1647.	1.5	48
192	Methods of Modelling the C-V Profiles of Arbitrary Homopolar Heterostructures. Materials Research Society Symposia Proceedings, 1989, 145, 475.	0.1	2
193	Electronic behaviour of decorated stacking faults in silicon. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1989, 4, 123-128.	1.7	26
194	Entropy-Driven Metastabilities in Defects in Semiconductors. Physical Review Letters, 1988, 61, 1627-1630.	2.9	23
195	Deep states associated with stacking faults in silicon. Electronics Letters, 1988, 24, 1340.	0.5	11
196	Application of deep level transient spectroscopy to metalâ€oxideâ€semiconductor relaxation transients. Journal of Applied Physics, 1987, 62, 576-581.	1.1	28
197	Damage related deep electron levels in ion implanted GaAs. Solid-State Electronics, 1986, 29, 467-470.	0.8	8
198	Capacitance and conductance deep level transient spectroscopy in fieldâ€effect transistors. Applied Physics Letters, 1986, 48, 227-229.	1.5	41

#	Article	IF	CITATIONS
199	Deep level profile studies in chromium radiotracer diffused MOCVD GaAs. Solid-State Electronics, 1985, 28, 611-615.	0.8	3
200	Electrical and optical properties of the neutral nickel acceptor in gallium phosphide. Journal of Physics C: Solid State Physics, 1984, 17, 6161-6167.	1.5	10
201	Distribution of deep levels in the GaAs layers of GaAs/AlxGa1â^'xAs heterostructures grown by MOCVD. Journal of Crystal Growth, 1984, 68, 295-300.	0.7	2
202	Characterisation of MOCVD InP grown from different adduct sources. Journal of Crystal Growth, 1984, 68, 326-333.	0.7	20
203	Calculation of deep state profiles from transient capacitance data. Applied Physics Letters, 1982, 40, 957-959.	1.5	11
204	Hole traps in n-type Galâ^'xAlxAs grown by organometallic vapour phase epitaxy. Electronics Letters, 1982, 18, 75.	0.5	19
205	Capture cross sections of the gold donor and acceptor states in n-type Czochralski silicon. Solid-State Electronics, 1982, 25, 643-649.	0.8	59
206	Deep states in transition metal diffused gallium phosphide. Solid-State Electronics, 1981, 24, 249-256.	0.8	39
207	A high sensitivity bridge for the measurement of deep states in semiconductors. Journal of Physics E: Scientific Instruments, 1980, 13, 1055-1061.	0.7	15
208	Nitrogen doping profiles in gallium phosphide grown by liquid phase epitaxy. Journal of Crystal Growth, 1979, 46, 59-68.	0.7	9
209	Deepâ€stateâ€controlled minorityâ€carrier lifetime innâ€type gallium phosphide. Journal of Applied Physics, 1979, 50, 6373-6385.	1.1	75
210	Recombination in gallium phosphide via a deep state associated with nickel. Electronics Letters, 1979, 15, 663.	0.5	8
211	Deep level profiles at substrate-epitaxial interfaces in gallium phosphide. Solid-State Electronics, 1978, 21, 1513-1517.	0.8	8
212	Brighton semiconductors. Physics Bulletin, 1978, 29, 160-161.	0.0	0
213	Nickel, a persistent inadvertent contaminant in device-grade vapour epitaxially grown gallium phosphide. Journal Physics D: Applied Physics, 1977, 10, 2545-2554.	1.3	30
214	Deepâ€kevel controlled lifetime and luminescence efficiency in GaP. Applied Physics Letters, 1975, 26, 702-704.	1.5	46
215	A deep center associated with the presence of nitrogen in GaP. Applied Physics Letters, 1975, 26, 122-124.	1.5	34
216	Gallium phosphide latching diode. Applied Physics Letters, 1974, 24, 414-417.	1.5	2

#	Article	IF	CITATIONS
217	Injection and quantum efficiencies of red-light-emitting gallium phosphide diodes. Journal Physics D: Applied Physics, 1972, 5, 803-809.	1.3	2
218	Doping gradients in layers of gallium phosphide grown by liquid epitaxy. Journal of Materials Science, 1972, 7, 168-175.	1.7	14
219	Doping gradients in layers of gallium phosphide grown by liquid epitaxy. Journal of Materials Science, 1972, 7, 168-175.	1.7	1
220	Transparent Conducting Films of Antimony Doped Tin Oxide on Glass. Review of Scientific Instruments, 1971, 42, 1825-1827.	0.6	37
221	The Growth of Epitaxial Gallium Phosphide from the Vapor Phase by Halogen Transport. Journal of the Electrochemical Society, 1971, 118, 318.	1.3	15
222	Monolithic Light Emitting Diode Arrays using Gallium Phosphide. Nature, 1971, 232, 469-470.	13.7	6
223	The measurement of doping profiles in thick epitaxial layers of GaP using Schottky barrier C-V data. Solid-State Electronics, 1970, 13, 1407-1413.	0.8	14
224	Efficiency peaking in red-light-emitting gallium-phosphide diodes. Electronics Letters, 1969, 5, 186.	0.5	5
225	Vacancy Clusters in Germanium. Solid State Phenomena, 0, 131-133, 125-130.	0.3	3
226	Formation of Radiation-Induced Defects in Si Crystals Irradiated with Electrons at Elevated Temperatures. Solid State Phenomena, 0, 156-158, 299-304.	0.3	4
227	Radiation-Induced Defect Reactions in Tin-Doped Ge Crystals. Solid State Phenomena, 0, 178-179, 392-397.	0.3	4
228	Interactions of Self-Interstitials with Interstitial Carbon-Interstitial Oxygen Center in Irradiated Silicon: An Infrared Absorption Study. Solid State Phenomena, 0, 205-206, 218-223.	0.3	6
229	The Trivacancy and Trivacancy-Oxygen Family of Defects in Silicon. Solid State Phenomena, 0, 205-206, 181-190.	0.3	3
230	Structure, Electronic Properties and Annealing Behavior of Di-Interstitial-Oxygen Center in Silicon. Solid State Phenomena, 0, 242, 290-295.	0.3	8
231	The Role of Si Selfâ€interstitial Atoms in the Formation of Electrically Active Defects in Reverseâ€Biased Silicon n + –p Diodes upon Irradiation with Alpha Particles. Physica Status Solidi (A) Applications and Materials Science, 0, , 2100104.	0.8	1
232	Indiumâ€Doped Silicon for Solar Cells—Lightâ€Induced Degradation and Deepâ€Level Traps. Physica Status Solidi (A) Applications and Materials Science, 0, , 2100108.	0.8	2