Anthony Peaker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1277198/publications.pdf Version: 2024-02-01

		126907	168389
232	4,130	33	53
papers	citations	h-index	g-index
232	232	232	2039
all docs	docs citations	times ranked	citing authors

ANTHONY DEAKED

#	Article	IF	CITATIONS
1	Laplace-transform deep-level spectroscopy: The technique and its applications to the study of point defects in semiconductors. Journal of Applied Physics, 2004, 96, 4689-4728.	2.5	270
2	Unidirectional electron flow in a nanometer-scale semiconductor channel: A self-switching device. Applied Physics Letters, 2003, 83, 1881-1883.	3.3	206
3	Laplace transform deepâ€level transient spectroscopic studies of defects in semiconductors. Journal of Applied Physics, 1994, 76, 194-198.	2.5	176
4	Vacancy–group-V-impurity atom pairs in Ge crystals doped with P, As, Sb, and Bi. Physical Review B, 2004, 70, .	3.2	108
5	Thermal activation and deactivation of grownâ€in defects limiting the lifetime of floatâ€zone silicon. Physica Status Solidi - Rapid Research Letters, 2016, 10, 443-447.	2.4	82
6	Tutorial: Junction spectroscopy techniques and deep-level defects in semiconductors. Journal of Applied Physics, 2018, 123, .	2.5	82
7	Electronic properties of antimony-vacancy complex in Ge crystals. Journal of Applied Physics, 2004, 95, 4078-4083.	2.5	77
8	Deepâ€stateâ€controlled minorityâ€carrier lifetime innâ€type gallium phosphide. Journal of Applied Physics, 1979, 50, 6373-6385.	2.5	75
9	Permanent annihilation of thermally activated defects which limit the lifetime of floatâ€zone silicon. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2844-2849.	1.8	69
10	Recombination processes in erbium-doped MBE silicon. Semiconductor Science and Technology, 1993, 8, 236-242.	2.0	68
11	Electronic properties of vacancy–oxygen complex in Ge crystals. Applied Physics Letters, 2002, 81, 1821-1823.	3.3	68
12	Evidence for substitutional-interstitial defect motion leading toDXbehavior by donors inAlxGa1â^'xAs. Physical Review Letters, 1992, 68, 2508-2511.	7.8	62
13	Capture cross sections of the gold donor and acceptor states in n-type Czochralski silicon. Solid-State Electronics, 1982, 25, 643-649.	1.4	59
14	Growth and structural characterization of molecular beam epitaxial erbium-doped GaAs. Journal of Crystal Growth, 1992, 121, 121-131.	1.5	58
15	Trivacancy and trivacancy-oxygen complexes in silicon: Experiments andab initiomodeling. Physical Review B, 2009, 80, .	3.2	55
16	Defect reactions associated with divacancy elimination in silicon. Journal of Physics Condensed Matter, 2003, 15, S2779-S2789.	1.8	52
17	Gettering of interstitial iron in silicon by plasma-enhanced chemical vapour deposited silicon nitride films. Journal of Applied Physics, 2016, 120, .	2.5	52
18	Deep donors in GaSb grown by molecular beam epitaxy. Applied Physics Letters, 1990, 57, 1645-1647.	3.3	48

#	Article	IF	CITATIONS
19	Coexistence of deep levels with optically active InAs quantum dots. Physical Review B, 2005, 72, .	3.2	47
20	Deepâ€level controlled lifetime and luminescence efficiency in GaP. Applied Physics Letters, 1975, 26, 702-704.	3.3	46
21	The oxygen dimer in Si: Its relationship to the light-induced degradation of Si solar cells?. Applied Physics Letters, 2011, 98, .	3.3	45
22	Stress-Induced Positive Charge in Hf-Based Gate Dielectrics: Impact on Device Performance and a Framework for the Defect. IEEE Transactions on Electron Devices, 2008, 55, 1647-1656.	3.0	44
23	Selfâ€organizing growth of erbium arsenide quantum dots and wires in gallium arsenide by molecular beam epitaxy. Applied Physics Letters, 1994, 64, 707-709.	3.3	43
24	Structure and properties of vacancy-oxygen complexes inSi1â^'xGexalloys. Physical Review B, 2004, 69, .	3.2	42
25	Recombination via point defects and their complexes in solar silicon. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 1884-1893.	1.8	42
26	Capacitance and conductance deep level transient spectroscopy in fieldâ€effect transistors. Applied Physics Letters, 1986, 48, 227-229.	3.3	41
27	Deep states in transition metal diffused gallium phosphide. Solid-State Electronics, 1981, 24, 249-256.	1.4	39
28	Transparent Conducting Films of Antimony Doped Tin Oxide on Glass. Review of Scientific Instruments, 1971, 42, 1825-1827.	1.3	37
29	Single Domain Switching Investigated Using Telegraph Noise Spectroscopy: Possible Evidence for Macroscopic Quantum Tunneling. Physical Review Letters, 1995, 75, 3513-3516.	7.8	37
30	Electrical activity of carbon-hydrogen centers in Si. Physical Review B, 2002, 66, .	3.2	37
31	Temperature dependence of the Schottky barrier in Al/AlGaAs metalâ€semiconductor junctions. Journal of Applied Physics, 1993, 74, 416-425.	2.5	36
32	Identification of the mechanism responsible for the boron oxygen light induced degradation in silicon photovoltaic cells. Journal of Applied Physics, 2019, 125, .	2.5	36
33	Electronic and dynamical properties of the silicon trivacancy. Physical Review B, 2012, 86, .	3.2	35
34	A deep center associated with the presence of nitrogen in GaP. Applied Physics Letters, 1975, 26, 122-124.	3.3	34
35	The determination of valence band discontinuities in Si/Si1â^'xGex/Si heterojunctions by capacitanceâ€voltage techniques. Journal of Applied Physics, 1993, 74, 1894-1899.	2.5	34
36	Donor level of bond-center hydrogen in germanium. Physical Review B, 2004, 69, .	3.2	34

#	Article	IF	CITATIONS
37	VO _n (n≥3) Defects in Irradiated and Heat-Treated Silicon. Solid State Phenomena, 2005, 108-109, 267-272.	0.3	34
38	Laplace-transform deep-level transient spectroscopy studies of the G4 gold–hydrogen complex in silicon. Applied Physics Letters, 1998, 73, 3126-3128.	3.3	31
39	Structure and electronic properties of trivacancy and trivacancy-oxygen complexes in silicon. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 568-571.	1.8	31
40	Nickel, a persistent inadvertent contaminant in device-grade vapour epitaxially grown gallium phosphide. Journal Physics D: Applied Physics, 1977, 10, 2545-2554.	2.8	30
41	Structure of theDXstate formed by donors in (Al,Ga)As and Ga(As,P). Journal of Applied Physics, 1995, 78, 2468-2477.	2.5	30
42	Application of deep level transient spectroscopy to metalâ€oxideâ€semiconductor relaxation transients. Journal of Applied Physics, 1987, 62, 576-581.	2.5	28
43	Deep levels associated with oxidation induced stacking faults innâ€ŧype silicon. Applied Physics Letters, 1992, 60, 359-361.	3.3	28
44	Effect of stress on the energy levels of the vacancy-oxygen-hydrogen complex in Si. Physical Review B, 2003, 68, .	3.2	27
45	Tin-vacancy complex in germanium. Journal of Applied Physics, 2011, 109, .	2.5	27
46	Electronic behaviour of decorated stacking faults in silicon. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1989, 4, 123-128.	3.5	26
47	Energy state distributions of the Pb centers at the (100), (110), and (111) Siâ^•SiO2 interfaces investigated by Laplace deep level transient spectroscopy. Applied Physics Letters, 2008, 92, .	3.3	25
48	Entropy-Driven Metastabilities in Defects in Semiconductors. Physical Review Letters, 1988, 61, 1627-1630.	7.8	23
49	Radiation-induced defects and their transformations in oxygen-rich germanium crystals. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 702-706.	0.8	23
50	The impact of negative-bias-temperature-instability on the carrier generation lifetime of metal-oxynitride-silicon capacitors. Journal of Applied Physics, 2006, 100, 124103.	2.5	23
51	Formation of interstitial carbon–interstitial oxygen complexes in silicon: Local vibrational mode spectroscopy and density functional theory. Physical Review B, 2008, 78, .	3.2	23
52	Boron–Oxygen Complex Responsible for Lightâ€Induced Degradation in Silicon Photovoltaic Cells: A New Insight into the Problem. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900315.	1.8	23
53	Vacancy–oxygen complex in Si1â^'xGex crystals. Applied Physics Letters, 2003, 82, 2652-2654.	3.3	22
54	Evolution of vacancy-related defects upon annealing of ion-implanted germanium. Physical Review B, 2008, 78, .	3.2	22

#	Article	IF	CITATIONS
55	Alloy Splitting of Gold and Platinum Acceptor Levels in SiGe. Physical Review Letters, 1999, 83, 4582-4585.	7.8	21
56	Characterisation of MOCVD InP grown from different adduct sources. Journal of Crystal Growth, 1984, 68, 326-333.	1.5	20
57	Titanium in silicon: Lattice positions and electronic properties. Applied Physics Letters, 2014, 104, 152105.	3.3	20
58	Hole traps in n-type Ga1â^'xAlxAs grown by organometallic vapour phase epitaxy. Electronics Letters, 1982, 18, 75.	1.0	19
59	Gold–hydrogen complexes in silicon. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1999, 58, 126-129.	3.5	19
60	Piezoscopic deep-level transient spectroscopy studies of the silicon divacancy. Physical Review B, 2002, 65, .	3.2	19
61	Passivation of titanium by hydrogen in silicon. Applied Physics Letters, 2013, 103, 132103.	3.3	19
62	Evidence for an iron-hydrogen complex in p-type silicon. Applied Physics Letters, 2015, 107, .	3.3	19
63	Acceptor levels of the carbon vacancy in 4H-SiC: Combining Laplace deep level transient spectroscopy with density functional modeling. Journal of Applied Physics, 2018, 124, 245701.	2.5	19
64	Thermally activated defects in float zone silicon: Effect of nitrogen on the introduction of deep level states. Journal of Applied Physics, 2018, 124, .	2.5	19
65	Characterisation of negative-U defects in semiconductors. Journal of Physics Condensed Matter, 2020, 32, 323001.	1.8	19
66	Recombination-generation behaviour of decorated defects in silicon. Semiconductor Science and Technology, 1992, 7, A263-A268.	2.0	18
67	Hole capture at theDX(Si) andDX(Te) defects in AlxGa1â^'xAs. Journal of Applied Physics, 1992, 72, 3198-3200.	2.5	17
68	Optical properties of dislocations in silicon crystals. Physica Status Solidi A, 1993, 138, 681-686.	1.7	17
69	Sharp 1.54 µm luminescence from porous erbium implanted silicon. Electronics Letters, 1995, 31, 2132-2133.	1.0	17
70	High-resolution deep-level transient spectroscopy studies of gold and platinum acceptor states in diluted SiGe alloys. Physical Review B, 2001, 63, .	3.2	17
71	Bond-center hydrogen in diluteSi1â^'xGexalloys: Laplace deep-level transient spectroscopy. Physical Review B, 2003, 68, .	3.2	17
72	The vacancy–donor pair in unstrained silicon, germanium and SiGe alloys. Journal of Physics Condensed Matter, 2005, 17, S2293-S2302.	1.8	17

#	Article	IF	CITATIONS
73	Implantation defects and n-type doping in Ge and Ge rich SiGe. Thin Solid Films, 2008, 517, 152-154.	1.8	17
74	Electrically active radiation-induced defects in Czochralski-grown Si with low carbon content. Journal of Physics Condensed Matter, 2005, 17, S2331-S2340.	1.8	16
75	Breakdown and degradation of ultrathin Hf-based (HfO[sub 2])[sub x](SiO[sub 2])[sub 1â^'x] gate oxide films. Journal of Vacuum Science & Technology B, 2009, 27, 443.	1.3	16
76	The Growth of Epitaxial Gallium Phosphide from the Vapor Phase by Halogen Transport. Journal of the Electrochemical Society, 1971, 118, 318.	2.9	15
77	A high sensitivity bridge for the measurement of deep states in semiconductors. Journal of Physics E: Scientific Instruments, 1980, 13, 1055-1061.	0.7	15
78	Electrically active defects induced by sputtering deposition on silicon: The role of hydrogen. Journal of Applied Physics, 2004, 95, 4752-4760.	2.5	15
79	Local modes of bond-centered hydrogen in Si:Ge and Ge:Si. Physical Review B, 2005, 71, .	3.2	15
80	The measurement of doping profiles in thick epitaxial layers of GaP using Schottky barrier C-V data. Solid-State Electronics, 1970, 13, 1407-1413.	1.4	14
81	Doping gradients in layers of gallium phosphide grown by liquid epitaxy. Journal of Materials Science, 1972, 7, 168-175.	3.7	14
82	The determination of valence band discontinuities and interface charge densities in Si/Si1-yGey/Si heterojunctions. Semiconductor Science and Technology, 1993, 8, 1487-1489.	2.0	14
83	High-resolution DLTS studies of vacancy-related defects in irradiated and in ion-implanted n-type silicon. Materials Science in Semiconductor Processing, 2000, 3, 237-241.	4.0	14
84	Vacancy-related complexes in neutron-irradiated silicon. Journal of Physics Condensed Matter, 2005, 17, S2229-S2235.	1.8	14
85	Hot-carrier degradation characteristics and explanation in 0.25 μm PMOSFETs. Chinese Physics B, 2005, 14, 1644-1648.	1.3	14
86	Interstitial Carbon Related Defects in Low-Temperature Irradiated Si: FTIR and DLTS Studies. Solid State Phenomena, 2005, 108-109, 261-266.	0.3	14
87	Determination of interstitial oxygen concentration in germanium by infrared absorption. Journal of Applied Physics, 2006, 100, 033525.	2.5	14
88	Interaction of iron with the local environment inSiGealloys investigated with Laplace transform deep level spectroscopy. Physical Review B, 2006, 74, .	3.2	14
89	Electron emission and capture by oxygen-related bistable thermal double donors in silicon studied with junction capacitance techniques. Journal of Applied Physics, 2018, 124, .	2.5	14
90	Defect-impurity interactions in irradiated tin-doped Cz-Si crystals. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 694-697.	0.8	13

#	Article	IF	CITATIONS
91	Saddle point for oxygen reorientation in the vicinity of a silicon vacancy. Physical Review B, 2003, 67, .	3.2	13
92	Radiation-Induced Defect Reactions in Cz-Si Crystals Contaminated with Cu. Solid State Phenomena, 2008, 131-133, 363-368.	0.3	13
93	Reliability nano-characterization of thin SiO2 and HfSixOy/SiO2 gate stacks. Microelectronic Engineering, 2007, 84, 2290-2293.	2.4	13
94	Laplace deep level transient spectroscopy: Embodiment and evolution. Physica B: Condensed Matter, 2012, 407, 3026-3030.	2.7	13
95	Donor levels of the divacancy-oxygen defect in silicon. Journal of Applied Physics, 2014, 115, 012004.	2.5	13
96	Powerful recombination centers resulting from reactions of hydrogen with carbon–oxygen defects in nâ€ŧype Czochralskiâ€grown silicon. Physica Status Solidi - Rapid Research Letters, 2017, 11, 1700133.	2.4	13
97	New insights into the thermally activated defects in n-type float-zone silicon. AIP Conference Proceedings, 2019, , .	0.4	13
98	Deep states associated with oxidation induced stacking faults in RTA p-type silicon before and after copper diffusion. Solid-State Electronics, 1995, 38, 1025-1034.	1.4	12
99	Magnetic characterization of self-organized ErAs clusters using telegraph noise spectroscopy. Physical Review B, 1998, 57, 7182-7189.	3.2	12
100	<i>E</i> 1/ <i>E</i> 2 traps in 6H-SiC studied with Laplace deep level transient spectroscopy. Applied Physics Letters, 2013, 102, .	3.3	12
101	Kinetics of Bulk Lifetime Degradation in Floatâ€Zone Silicon: Fast Activation and Annihilation of Grownâ€In Defects and the Role of Hydrogen versus Light. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000436.	1.8	12
102	Calculation of deep state profiles from transient capacitance data. Applied Physics Letters, 1982, 40, 957-959.	3.3	11
103	Characterization of Si/Si1â^'xGex/Si heterostructures by capacitanceâ€transient spectroscopy. Journal of Applied Physics, 1994, 76, 4237-4243.	2.5	11
104	Recombination via transition metals in solar silicon: The significance of hydrogen–metal reactions and lattice sites of metal atoms. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700304.	1.8	11
105	Deep states associated with stacking faults in silicon. Electronics Letters, 1988, 24, 1340.	1.0	11
106	Electrical and optical properties of the neutral nickel acceptor in gallium phosphide. Journal of Physics C: Solid State Physics, 1984, 17, 6161-6167.	1.5	10
107	Luminescence from erbium implanted silicon–germanium quantum wells. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1998, 16, 2928.	1.6	10
108	Erbium-doped Si1-xGex/Si structures for light emitting diodes. Semiconductor Science and Technology, 2000, 15, 91-97.	2.0	10

#	Article	IF	CITATIONS
109	Electronic Properties and Structure of a Complex Incorporating a Self-Interstitial and two Oxygen Atoms in Silicon. Solid State Phenomena, 2005, 108-109, 273-278.	0.3	10
110	Antibonding configurations of hydrogen in silicon-germanium alloys. Physical Review B, 2006, 73, .	3.2	10
111	Reliability degradation of thin HfO2/SiO2 gate stacks by remote RF hydrogen and deuterium plasma treatment. Thin Solid Films, 2008, 517, 207-208.	1.8	10
112	Nitrogen doping profiles in gallium phosphide grown by liquid phase epitaxy. Journal of Crystal Growth, 1979, 46, 59-68.	1.5	9
113	Non-destructive identification of end-of-range damage in ion-implanted and annealed silicon. Applied Surface Science, 1993, 63, 227-231.	6.1	9
114	Impact of different defects on the kinetics of negative bias temperature instability of hafnium stacks. Applied Physics Letters, 2008, 92, 013501.	3.3	9
115	Exceptional gettering response of epitaxially grown kerfless silicon. Journal of Applied Physics, 2016, 119, .	2.5	9
116	Deep level profiles at substrate-epitaxial interfaces in gallium phosphide. Solid-State Electronics, 1978, 21, 1513-1517.	1.4	8
117	Damage related deep electron levels in ion implanted GaAs. Solid-State Electronics, 1986, 29, 467-470.	1.4	8
118	Oxygen-related radiation-induced defects in SiGe alloys. Journal of Physics Condensed Matter, 2003, 15, S2835-S2842.	1.8	8
119	Process-induced positive charges in Hf-based gate stacks. Journal of Applied Physics, 2008, 103, 014507.	2.5	8
120	Trivacancy in silicon: A combined DLTS and ab-initio modeling study. Physica B: Condensed Matter, 2009, 404, 4565-4567.	2.7	8
121	Structure, Electronic Properties and Annealing Behavior of Di-Interstitial-Oxygen Center in Silicon. Solid State Phenomena, 0, 242, 290-295.	0.3	8
122	Electrical Characterization of Thermally Activated Defects in n-Type Float-Zone Silicon. IEEE Journal of Photovoltaics, 2021, 11, 26-35.	2.5	8
123	Recombination in gallium phosphide via a deep state associated with nickel. Electronics Letters, 1979, 15, 663.	1.0	8
124	Non-Radiative Competition in the Excitation of Erbium Implanted Silicon Light Emitting Devices. Materials Research Society Symposia Proceedings, 1995, 392, 223.	0.1	7
125	Vacancy-related defects in ion implanted and electron irradiated silicon. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 71, 143-147.	3.5	7
126	Publisher's Note: Donor level of bond-center hydrogen in germanium [Phys. Rev. B69, 245207 (2004)]. Physical Review B, 2004, 70, .	3.2	7

#	Article	IF	CITATIONS
127	Combined optical and electrical studies of the effects of annealing on the intrinsic states and deep levels in a self-assembled InAs quantum-dot structure. Journal of Applied Physics, 2006, 100, 043703.	2.5	7
128	Carrier emission from the electronic states of self-assembled indium arsenide quantum dots. Materials Science and Engineering C, 2006, 26, 760-765.	7.3	7
129	Understanding Ion Implantation Defects in Germanium. ECS Transactions, 2006, 3, 67-76.	0.5	7
130	Four Case Studies of Adapting Enquiry-Based Learning (EBL) in Electrical and Electronic Engineering. International Journal of Electrical Engineering and Education, 2008, 45, 121-130.	0.8	7
131	Molybdenum nano-precipitates in silicon: A TEM and DLTS study. Physica Status Solidi (B): Basic Research, 2014, 251, 2201-2204.	1.5	7
132	Electronic Properties and Structure of Boron–Hydrogen Complexes in Crystalline Silicon. Solar Rrl, 2022, 6, 2100459.	5.8	7
133	Dynamics of Hydrogen in Silicon at Finite Temperatures from First Principles. Physica Status Solidi (B): Basic Research, 2022, 259, .	1.5	7
134	Monolithic Light Emitting Diode Arrays using Gallium Phosphide. Nature, 1971, 232, 469-470.	27.8	6
135	A comparison of the photoluminescence decay of erbium in silicon and silicon-germanium. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 81, 164-166.	3.5	6
136	Effect of dislocations on the photoluminescence decay of 1.54 μm emission from erbium-doped silicon. Journal of Applied Physics, 2001, 89, 2715-2719.	2.5	6
137	Hole trapping in self-assembled SiGe quantum nanostructures. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2003, 101, 338-344.	3.5	6
138	Electronic Properties and Thermal Stability of Defects Induced by MeV Electron/Ion Irradiations in Unstrained Germanium and SiGe Alloys. Solid State Phenomena, 2005, 108-109, 253-260.	0.3	6
139	Stable and metastable configurations of iron atoms in SiGe alloys. Journal of Physics Condensed Matter, 2005, 17, S2267-S2272.	1.8	6
140	Electrical activity of thePtH2complex in silicon: High-resolution Laplace deep-level transient spectroscopy and uniaxial-stress technique. Physical Review B, 2006, 73, .	3.2	6
141	Interactions of Self-Interstitials with Interstitial Carbon-Interstitial Oxygen Center in Irradiated Silicon: An Infrared Absorption Study. Solid State Phenomena, 0, 205-206, 218-223.	0.3	6
142	Interactions of hydrogen with vanadium in crystalline silicon. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2838-2843.	1.8	6
143	Theory of a carbonâ€oxygenâ€hydrogen recombination center in nâ€type Si. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700309.	1.8	6
144	The diâ€interstitial in silicon: Electronic properties and interactions with oxygen and carbon impurity atoms. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700261.	1.8	6

#	Article	IF	CITATIONS
145	Passivation of thermally-induced defects with hydrogen in float-zone silicon. Journal Physics D: Applied Physics, 2021, 54, 275105.	2.8	6
146	Efficiency peaking in red-light-emitting gallium-phosphide diodes. Electronics Letters, 1969, 5, 186.	1.0	5
147	Minority-carrier confinement by doping barriers. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1991, 9, 375-378.	3.5	5
148	A new, fast method for the computer simulation of CV profiles in multilayer structures. Applied Surface Science, 1991, 50, 149-153.	6.1	5
149	The electrical assessment of p-isotype Si/SiGe/Si heterostructures grown by MBE. Thin Solid Films, 1992, 222, 116-119.	1.8	5
150	Correlation between optical spectroscopy and capacitanceâ€voltage profile simulation applied to interface states in multilayer GaAs/AlGaAs heterostructures. Journal of Applied Physics, 1993, 73, 5032-5037.	2.5	5
151	Erbium in Semiconductors: Where are we coming from; Where are we going?. Materials Research Society Symposia Proceedings, 2005, 866, 19.	0.1	5
152	Interaction of self-interstitials with oxygen-related defects in electron-irradiated Ge crystals. Materials Science in Semiconductor Processing, 2006, 9, 613-618.	4.0	5
153	Hydrogen induced positive charge in Hf-based dielectrics. Microelectronic Engineering, 2007, 84, 2354-2357.	2.4	5
154	Iron-aluminium pair reconfiguration processes in SiGe alloys. Journal of Materials Science: Materials in Electronics, 2007, 18, 759-762.	2.2	5
155	Interactions of Cu and Ni Impurities with Vacancy-related Point Defects in Czochralski-grown Si Crystals. ECS Transactions, 2009, 18, 1013-1018.	0.5	5
156	Local vibrational modes of the oxygen trimer in Si. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 709-712.	0.8	5
157	Local vibrational modes of interstitial boron–interstitial oxygen complex in silicon. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2850-2854.	1.8	5
158	Radiationâ€induced interstitial carbon atom in silicon: Effect of charge state on annealing characteristics. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700262.	1.8	5
159	Acceptor-oxygen defects in silicon: The electronic properties of centers formed by boron, gallium, indium, and aluminum interactions with the oxygen dimer. Journal of Applied Physics, 2021, 130, 245703.	2.5	5
160	Lowâ€ŧemperature decay of photocapacitance caused by Snâ€ŧelatedDXcenters in AlxGa1â^'xAs. Applied Physics Letters, 1993, 62, 1393-1395.	3.3	4
161	Luminescence Decay of the 1.54 μm Emission from Erbium in Silicon. Materials Research Society Symposia Proceedings, 1996, 422, 119.	0.1	4
162	The use of electron back-scattered diffraction to study the regrowth of amorphised silicon-based heterostructures. Materials Science in Semiconductor Processing, 2001, 4, 121-123.	4.0	4

#	Article	IF	CITATIONS
163	Germanium $\hat{a} \in \$ The Semiconductor of Tomorrow?. AIP Conference Proceedings, 2006, , .	0.4	4
164	Electrically active defects induced by hydrogen and helium implantations in Ge. Materials Science in Semiconductor Processing, 2008, 11, 354-359.	4.0	4
165	Formation of Radiation-Induced Defects in Si Crystals Irradiated with Electrons at Elevated Temperatures. Solid State Phenomena, 0, 156-158, 299-304.	0.3	4
166	Interstitial-related defect reactions in electron-irradiated oxygen-rich Ge crystals: A DLTS study. Physica B: Condensed Matter, 2009, 404, 4533-4536.	2.7	4
167	Radiation-Induced Defect Reactions in Tin-Doped Ge Crystals. Solid State Phenomena, 0, 178-179, 392-397.	0.3	4
168	Recombination centers resulting from reactions of hydrogen and oxygen in n-type Czochralski silicon. , 2016, , .		4
169	Vanadium in silicon: Lattice positions and electronic properties. Applied Physics Letters, 2017, 110, 142105.	3.3	4
170	Lifetime degradation of n-type Czochralski silicon after hydrogenation. Journal of Applied Physics, 2018, 123, .	2.5	4
171	Deep level profile studies in chromium radiotracer diffused MOCVD GaAs. Solid-State Electronics, 1985, 28, 611-615.	1.4	3
172	The impact of lattice dilation on deep states in MBE GaAs. Journal of Crystal Growth, 1993, 127, 703-706.	1.5	3
173	Oxygen loss and thermal double donor formation in germanium. Materials Science in Semiconductor Processing, 2006, 9, 619-624.	4.0	3
174	Vacancy Clusters in Germanium. Solid State Phenomena, 0, 131-133, 125-130.	0.3	3
175	Nanoscale electrical characterization of ultrathin high-k dielectric MOS stacks: A conducting AFM study. Materials Science in Semiconductor Processing, 2008, 11, 250-253.	4.0	3
176	Electrically active hydrogen-implantation-induced defects in Ge crystals and SiGe alloys. Thin Solid Films, 2008, 517, 419-421.	1.8	3
177	The Trivacancy and Trivacancy-Oxygen Family of Defects in Silicon. Solid State Phenomena, 0, 205-206, 181-190.	0.3	3
178	Evidence for Molybdenumâ€Hydrogen Bonding in pâ€Type Silicon upon Annealing under Illumination. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800611.	1.8	3
179	Interaction of Radiationâ€Induced Selfâ€Interstitials with Vacancyâ€Oxygen Related Defects V n O 2 (n from) T	j ETQg1 1	0.784314 rg
180	On the Correlation between Light-Induced Degradation and Minority Carrier Traps in Boron-Doped Czochralski Silicon. ACS Applied Materials & Interfaces, 2021, 13, 6140-6146.	8.0	3

#	Article	IF	CITATIONS
181	Injection and quantum efficiencies of red-light-emitting gallium phosphide diodes. Journal Physics D: Applied Physics, 1972, 5, 803-809.	2.8	2
182	Gallium phosphide latching diode. Applied Physics Letters, 1974, 24, 414-417.	3.3	2
183	Distribution of deep levels in the GaAs layers of GaAs/AlxGa1â^'xAs heterostructures grown by MOCVD. Journal of Crystal Growth, 1984, 68, 295-300.	1.5	2
184	Methods of Modelling the C-V Profiles of Arbitrary Homopolar Heterostructures. Materials Research Society Symposia Proceedings, 1989, 145, 475.	0.1	2
185	A Novel Approach to the Assessment of Semiconductor Hetero-Interfaces in Multilayer Structures. Materials Research Society Symposia Proceedings, 1990, 198, 389.	0.1	2
186	Erbium Doped Gallium Arsenide a Self-Organising Low Dimensional System. Materials Research Society Symposia Proceedings, 1993, 301, 337.	0.1	2
187	Laplace transform deep level transient spectroscopy: new insight into defect microscopy. Materials Science and Technology, 1995, 11, 1071-1073.	1.6	2
188	Recombination and radiation damage in crystalline silicon solar cell material. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 2274-2281.	0.8	2
189	Divacancy-related complexes in Si(1â^x)Ge(x). Materials Science in Semiconductor Processing, 2006, 9, 525-530.	4.0	2
190	Defects induced by irradiation with fast neutrons in n-type germanium. Materials Science in Semiconductor Processing, 2006, 9, 606-612.	4.0	2
191	Alloy shift of "no-germanium―iron-related electronic levels in unstrained silicon-germanium alloys. Physical Review B, 2007, 76, .	3.2	2
192	Photovoltaic Power Generation: The Impact of Nano-Materials. Materials Science Forum, 2008, 608, 181-200.	0.3	2
193	Reconfigurations and diffusion of trivacancy in silicon. Physica B: Condensed Matter, 2012, 407, 2974-2977.	2.7	2
194	Electrical and Optical Defect Evaluation Techniques for Electronic and Solar Grade Silicon. Lecture Notes in Physics, 2015, , 129-180.	0.7	2
195	Indiumâ€Doped Silicon for Solar Cells—Lightâ€Induced Degradation and Deepâ€Level Traps. Physica Status Solidi (A) Applications and Materials Science, 0, , 2100108.	1.8	2
196	MBE Grown GaSb, AlSb Crystals High Pressure Electrical Characterisation. Japanese Journal of Applied Physics, 1993, 32, 261.	1.5	2
197	Interactions of Hydrogen Atoms with Acceptor–Dioxygen Complexes in Czochralskiâ€Grown Silicon. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, .	1.8	2
198	Electrical Properties of Oxidation-Induced Stacking Faults in N-Type Silicon. Materials Science Forum, 1992, 83-87, 1463-1468.	0.3	1

#	Article	IF	CITATIONS
199	Light-beam-induced transient spectroscopy of oxidation-induced stacking faults in silicon. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1994, 24, 167-169.	3.5	1
200	Recombination at Oxidation Induced Stacking Faults in Silicon. Materials Research Society Symposia Proceedings, 1995, 378, 995.	0.1	1
201	Properties and Growth of MBE Grown Erbium Doped Gallium Arsenide Co-Doped with Selenium. Materials Research Society Symposia Proceedings, 1996, 422, 35.	0.1	1
202	Light Emission From Erbium Doped Si1-x XGe1Heterostructures. Materials Research Society Symposia Proceedings, 1998, 533, 133.	0.1	1
203	Incorporation and optical activation of erbium in strained silicon–germanium structures. Solid-State Electronics, 2001, 45, 1927-1930.	1.4	1
204	High resolution DLTS of hydrogen reactions with defects in erbium-implanted silicon. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 81, 77-79.	3.5	1
205	Laplace DLTS studies on deep levels coexisted with InAs quantum dots. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 3844-3847.	0.8	1
206	Formation of Hydrogen-Related Shallow Donors in Ge _{1-x} Si _x Crystals Implanted with Protons. Solid State Phenomena, 2008, 131-133, 131-136.	0.3	1
207	Bistability of hydrogen donors in proton-implanted GeSi alloy. Technical Physics Letters, 2008, 34, 498-499.	0.7	1
208	Comprehensive study of InAs/GaAs quantum dots by means of complementary methods. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2009, 165, 98-102.	3.5	1
209	Energy state distributions at oxide–semiconductor interfaces investigated by Laplace DLTS. Physica B: Condensed Matter, 2009, 404, 4604-4607.	2.7	1
210	Defect-impurity complexes with high thermal stability in epi-Si n+-p diodes irradiated with MeV electrons. Vacuum, 2009, 83, S131-S133.	3.5	1
211	Neutron-irradiation-induced defects in germanium: A Laplace deep level transient spectroscopy study. Vacuum, 2009, 84, 32-36.	3.5	1
212	Laplace-Transform Deep-Level Spectroscopy Characterization of the Intrinsic and Deep-Level States in Self-Assembled InAs Quantum-Dot Structures. , 2010, , .		1
213	Back Cover: Recombination via point defects and their complexes in solar silicon (Phys. Status Solidi A) Tj ETQq1	1 0.78431 1.8	4 ₁ gBT /Ove
214	The Role of Si Selfâ€interstitial Atoms in the Formation of Electrically Active Defects in Reverseâ€Biased Silicon n + –p Diodes upon Irradiation with Alpha Particles. Physica Status Solidi (A) Applications and Materials Science, 0, , 2100104.	1.8	1
215	Doping gradients in layers of gallium phosphide grown by liquid epitaxy. Journal of Materials Science, 1972, 7, 168-175.	3.7	1
216	Hole-Related Electrical Activity of InAs/GaAs Quantum Dots. Acta Physica Polonica A, 2008, 114, 1201-1206.	0.5	1

#	Article	IF	CITATIONS
217	Electrical characteristics of InAs self-assembled quantum dots embedded in GaAs using admittance spectroscopy. Journal of Nanophotonics, 2012, 6, 013502.	1.0	1
218	Brighton semiconductors. Physics Bulletin, 1978, 29, 160-161.	0.0	0
219	Entropy-Driven Metastable Defects in Silicon. Materials Science Forum, 1991, 38-41, 499-504.	0.3	0
220	Optical characterization of deep states associated with oxidation-induced stacking faults in silicon. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1994, 24, 170-174.	3.5	0
221	Light emission in silicon-germanium at 1.54 Î $^1\!\!/$ m using erbium luminescence. , 1998, 3465, 357.		0
222	Separation of dislocation- and erbium-related photoluminescence by time resolved studies. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 81, 56-58.	3.5	0
223	Negative-bias-temperature-instability in metal–insulator–semiconductor structures. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 109, 127-130.	3.5	Ο
224	Extrinsic stacking fault generation related to high–k dielectric growth on a Si substrate. Microelectronic Engineering, 2007, 84, 2374-2377.	2.4	0
225	Piezospectroscopic analysis of mobile defects in semiconducting materials. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 529-534.	0.8	Ο
226	Post-stress/breakdown leakage mechanism in ultrathin high-Î [®] (HfO ₂) _x (SiO ₂) _{1-x} /SiO ₂ gate stacks: A nanoscale conductive-Atomic Force Microscopy C-AFM. Materials Research Society Symposia Proceedings, 2008, 1108, 1.	0.1	0
227	Relation between photocurrent and DLTS signals observed for quantum dot systems. Physica B: Condensed Matter, 2009, 404, 5170-5172.	2.7	0
228	Electric-Field Dependence of Electron Emission from InAsâ^•GaAs Quantum Dots. , 2010, , .		0
229	Temperature and frequency dependent admittance of InAs self-assembled quantum dots embedded in GaAs. , 2011, , .		0
230	Nano-precipitates $\hat{a} \in \stackrel{l}{\cdot}$ a new recombination model. , 2015, , .		0
231	Defects and Diffusion in SiGe and Strained Si. , 2007, , .		0
232	Minority carrier traps in Czochralski-grown p-type silicon crystals doped with B, Al, Ga, or In impurity		0

atoms. , 2020, , .