Xiangjian Wan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/127718/publications.pdf

Version: 2024-02-01

		16437	1	.2258	
188	18,601	64		133	
papers	citations	h-index		g-index	
195	195	195		13024	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	Molecular optimization of incorporating pyran fused acceptor–donor–acceptor type acceptors enables over 15% efficiency in organic solar cells. Journal of Materials Chemistry C, 2022, 10, 1977-1983.	2.7	6
2	Spirocyclic side chain of a non-fullerene acceptor enables efficient organic solar cells with reduced recombination loss and energetic disorder. RSC Advances, 2022, 12, 6573-6582.	1.7	5
3	Tuning Morphology of Active Layer by using a Wide Bandgap Oligomer‣ike Donor Enables Organic Solar Cells with Over 18% Efficiency. Advanced Energy Materials, 2022, 12, .	10.2	45
4	Tuning the Phase Separation by Thermal Annealing Enables High-Performance All-Small-Molecule Organic Solar Cells. Chemistry of Materials, 2022, 34, 3168-3177.	3.2	12
5	Conjugated Extension of Non-Fullerene Acceptors Enables Efficient Organic Solar Cells with Optoelectronic Response over 1000 nm. ACS Applied Energy Materials, 2022, 5, 4664-4672.	2.5	3
6	Recent progress in organic solar cells (Part I material science). Science China Chemistry, 2022, 65, 224-268.	4.2	349
7	A novel chlorinated small molecule donor for efficient binary and ternary all-small-molecule organic solar cells. Organic Electronics, 2022, 106, 106532.	1.4	5
8	Allâ€Smallâ€Molecule Organic Solar Cells with Efficiency Approaching 16% and FF over 80%. Small, 2022, 18, e2201400.	5.2	21
9	The effects of the side-chain length of non-fullerene acceptors on their performance in all-small-molecule organic solar cells. Journal of Materials Chemistry C, 2022, 10, 8719-8727.	2.7	7
10	Tandem organic solar cells with 18.67% efficiency <i>via</i> careful subcell design and selection. Journal of Materials Chemistry A, 2022, 10, 11238-11245.	5.2	18
11	Lowing the energy loss of organic solar cells by molecular packing engineering via multiple molecular conjugation extension. Science China Chemistry, 2022, 65, 1362-1373.	4.2	79
12	Pyran-fused non-fullerene acceptor achieving 15.51% efficiency in organic solar cells. Organic Electronics, 2022, 106, 106541.	1.4	8
13	lonic Dopant-Free Polymer Alloy Hole Transport Materials for High-Performance Perovskite Solar Cells. Journal of the American Chemical Society, 2022, 144, 9500-9509.	6.6	85
14	Recent progress in organic solar cells (Part II device engineering). Science China Chemistry, 2022, 65, 1457-1497.	4.2	157
15	Can Isotope Effects Enable Organic Solar Cells to Achieve Smaller Non-Radiative Energy Losses and Why?. Chemistry of Materials, 2022, 34, 6009-6025.	3.2	19
16	A Low Reorganization Energy and Two-dimensional Acceptor with Four End Units for Organic Solar Cells with Low Eloss. Chinese Journal of Polymer Science (English Edition), 2022, 40, 921-927.	2.0	10
17	Achieving over 18 % Efficiency Organic Solar Cell Enabled by a ZnOâ€Based Hybrid Electron Transport Layer with an Operational Lifetime up to 5 Years. Angewandte Chemie - International Edition, 2022, 61, .	7.2	36
18	Achieving over 18 % Efficiency Organic Solar Cell Enabled by a ZnOâ€Based Hybrid Electron Transport Layer with an Operational Lifetime up to 5â€Years. Angewandte Chemie, 2022, 134, .	1.6	10

#	Article	IF	Citations
19	A solution-processed nanoscale COF-like material towards optoelectronic applications. Science China Chemistry, 2021, 64, 82-91.	4.2	38
20	Improving current and mitigating energy loss in ternary organic photovoltaics enabled by two well-compatible small molecule acceptors. Science China Chemistry, 2021, 64, 608-615.	4.2	13
21	Flexible Highâ€Performance and Solutionâ€Processed Organic Photovoltaics with Robust Mechanical Stability. Advanced Functional Materials, 2021, 31, 2010000.	7.8	29
22	Spacer Engineering Using Aromatic Formamidinium in 2D/3D Hybrid Perovskites for Highly Efficient Solar Cells. ACS Nano, 2021, 15, 7811-7820.	7.3	99
23	Structural optimization of acceptor molecules guided by a semi-empirical model for organic solar cells with efficiency over 15%. Science China Materials, 2021, 64, 2388-2396.	3.5	6
24	Concurrently Improved <i>J</i> _{sc} , Fill Factor, and Stability in a Ternary Organic Solar Cell Enabled by a C-Shaped Non-fullerene Acceptor and Its Structurally Similar Third Component. ACS Applied Materials & District Samp; Interfaces, 2021, 13, 40766-40777.	4.0	18
25	Improving the performances of all-small-molecule organic solar cells by fine-tuning halogen substituents of donor molecule. Organic Electronics, 2021, 99, 106340.	1.4	4
26	Broad-Spectrum Ultrathin-Metal-Based Oxide/Metal/Oxide Transparent Conductive Films for Optoelectronic Devices. ACS Applied Materials & Samp; Interfaces, 2021, 13, 58539-58551.	4.0	8
27	A novel acceptor with a <i>N</i> , <i>N</i> -dialkyl thieno[3′,2′:2,3]indolo[7,6- <i>g</i>]thieno[3,2- <i>b</i>]indole (TITI) core for organic solar cells with a high fill factor of 0.75. Chemical Communications, 2020, 56, 751-753.	2.2	12
28	Side chain engineering investigation of non-fullerene acceptors for photovoltaic device with efficiency over 15%. Science China Chemistry, 2020, 63, 1799-1806.	4.2	25
29	Effect of Nitro-Substituted Ending Groups on the Photovoltaic Properties of Nonfullerene Acceptors. ACS Applied Materials & Samp; Interfaces, 2020, 12, 41861-41868.	4.0	11
30	A nonfullerene acceptor incorporating a dithienopyran fused backbone for organic solar cells with efficiency over 14%. Nano Energy, 2020, 75, 104988.	8.2	27
31	Subtle Morphology Control with Binary Additives for High-Efficiency Non-Fullerene Acceptor Organic Solar Cells. ACS Applied Materials & Samp; Interfaces, 2020, 12, 27425-27432.	4.0	16
32	An oxygen heterocycle-fused fluorene based non-fullerene acceptor for high efficiency organic solar cells. Materials Chemistry Frontiers, 2020, 4, 3594-3601.	3.2	15
33	Acceptor–donor–acceptor type molecules for high performance organic photovoltaics – chemistry and mechanism. Chemical Society Reviews, 2020, 49, 2828-2842.	18.7	326
34	An acceptor–donor–acceptor type non-fullerene acceptor with an asymmetric backbone for high performance organic solar cells. Journal of Materials Chemistry C, 2020, 8, 6293-6298.	2.7	12
35	Phase Distribution and Carrier Dynamics in Multiple-Ring Aromatic Spacer-Based Two-Dimensional Ruddlesden–Popper Perovskite Solar Cells. ACS Nano, 2020, 14, 4871-4881.	7.3	126
36	Achieving an Efficient and Stable Morphology in Organic Solar Cells Via Fine-Tuning the Side Chains of Small-Molecule Acceptors. Chemistry of Materials, 2020, 32, 2593-2604.	3.2	91

#	Article	IF	Citations
37	Lowâ∈Bandgap Porphyrins for Highly Efficient Organic Solar Cells: Materials, Morphology, and Applications. Advanced Materials, 2020, 32, e1906129.	11.1	143
38	Achieving organic solar cells with efficiency over 14% based on a non-fullerene acceptor incorporating a cyclopentathiophene unit fused backbone. Journal of Materials Chemistry A, 2020, 8, 5194-5199.	5.2	21
39	An all small molecule organic solar cell based on a porphyrin donor and a non-fullerene acceptor with complementary and broad absorption. Dyes and Pigments, 2020, 176, 108250.	2.0	20
40	All-Small-Molecule Organic Solar Cells Based on a Fluorinated Small Molecule Donor With High Open-Circuit Voltage of 1.07 V. Frontiers in Chemistry, 2020, 8, 329.	1.8	15
41	The rational and effective design of nonfullerene acceptors guided by a semi-empirical model for an organic solar cell with an efficiency over 15%. Journal of Materials Chemistry A, 2020, 8, 9726-9732.	5.2	54
42	A privileged ternary blend enabling non-fullerene organic photovoltaics with over 14% efficiency. Journal of Materials Chemistry C, 2020, 8, 15135-15141.	2.7	4
43	Efficient and thermally stable organic solar cells based on small molecule donor and polymer acceptor. Nature Communications, 2019, 10, 3271.	5.8	94
44	Sequentially Deposited versus Conventional Nonfullerene Organic Solar Cells: Interfacial Trap States, Vertical Stratification, and Exciton Dissociation. Advanced Energy Materials, 2019, 9, 1902145.	10.2	36
45	A new medium-bandgap fused-[1]benzothieno[3,2-b][1]benzo-thiophene (BTBT) nonfullerene acceptor for organic solar cells with high open-circuit voltage. Polymer, 2019, 185, 121976.	1.8	6
46	High Performance Thickâ€Film Nonfullerene Organic Solar Cells with Efficiency over 10% and Active Layer Thickness of 600 nm. Advanced Energy Materials, 2019, 9, 1902688.	10.2	69
47	Achieving Both Enhanced Voltage and Current through Fineâ€Tuning Molecular Backbone and Morphology Control in Organic Solar Cells. Advanced Energy Materials, 2019, 9, 1901024.	10.2	73
48	Highly Efficient and Stable Solar Cells Based on Crystalline Oriented 2D/3D Hybrid Perovskite. Advanced Materials, 2019, 31, e1901242.	11.1	210
49	A Tandem Organic Solar Cell with PCE of 14.52% Employing Subcells with the Same Polymer Donor and Two Absorption Complementary Acceptors. Advanced Materials, 2019, 31, e1804723.	11.1	48
50	Fluorination-modulated end units for high-performance non-fullerene acceptors based organic solar cells. Science China Materials, 2019, 62, 1210-1217.	3.5	14
51	New Anthraceneâ€Fused Nonfullerene Acceptors for Highâ€Efficiency Organic Solar Cells: Energy Level Modulations Enabling Match of Donor and Acceptor. Advanced Energy Materials, 2019, 9, 1803541.	10.2	95
52	A cyclopentadithiophene-bridged small molecule acceptor with near-infrared light absorption for efficient organic solar cells. Journal of Materials Chemistry C, 2019, 7, 4013-4019.	2.7	17
53	Organic Solar Cells: Sequentially Deposited versus Conventional Nonfullerene Organic Solar Cells: Interfacial Trap States, Vertical Stratification, and Exciton Dissociation (Adv. Energy Mater. 47/2019). Advanced Energy Materials, 2019, 9, 1970185.	10.2	1
54	Flexible organic photovoltaics based on water-processed silver nanowire electrodes. Nature Electronics, 2019, 2, 513-520.	13.1	255

#	Article	IF	Citations
55	Small Molecule Acceptors with a Nonfused Architecture for High-Performance Organic Photovoltaics. Chemistry of Materials, 2019, 31, 904-911.	3.2	66
56	Fine-tuning the side-chains of non-fullerene small molecule acceptors to match with appropriate polymer donors. Journal of Materials Chemistry A, 2018, 6, 8586-8594.	5.2	38
57	A New Nonfullerene Acceptor with Near Infrared Absorption for High Performance Ternaryâ€Blend Organic Solar Cells with Efficiency over 13%. Advanced Science, 2018, 5, 1800307.	5.6	111
58	Efficient carbazole-based small-molecule organic solar cells with an improved fill factor. RSC Advances, 2018, 8, 4867-4871.	1.7	11
59	A Halogenation Strategy for over 12% Efficiency Nonfullerene Organic Solar Cells. Advanced Energy Materials, 2018, 8, 1702870.	10.2	159
60	Two Thieno [3,2―b]thiopheneâ€Based Small Molecules as Bifunctional Photoactive Materials for Organic Solar Cells. Solar Rrl, 2018, 2, 1700179.	3.1	12
61	Synergistic Modifications of Side Chains and End Groups in Small Molecular Acceptors for High Efficient Nonâ€Fullerene Organic Solar Cells. Solar Rrl, 2018, 2, 1800053.	3.1	23
62	All-Small-Molecule Organic Solar Cells Based on Pentathiophene Donor and Alkylated Indacenodithiophene-Based Acceptors with Efficiency over 8%. ACS Applied Energy Materials, 2018, 1, 2150-2156.	2.5	29
63	Substituents on the end group subtle tuning the energy levels and absorptions of small-molecule nonfullerene acceptors. Dyes and Pigments, 2018, 155, 241-248.	2.0	18
64	Nonfullerene Tandem Organic Solar Cells with High Performance of 14.11%. Advanced Materials, 2018, 30, e1707508.	11.1	184
65	Fineâ€Tuning the Energy Levels of a Nonfullerene Smallâ€Molecule Acceptor to Achieve a High Shortâ€Circuit Current and a Power Conversion Efficiency over 12% in Organic Solar Cells. Advanced Materials, 2018, 30, 1704904.	11.1	214
66	Highâ€Performance Allâ€Smallâ€Molecule Solar Cells Based on a New Type of Small Molecule Acceptors with Chlorinated End Groups. Advanced Energy Materials, 2018, 8, 1802021.	10.2	76
67	Two-Dimensional Ruddlesden–Popper Perovskite with Nanorod-like Morphology for Solar Cells with Efficiency Exceeding 15%. Journal of the American Chemical Society, 2018, 140, 11639-11646.	6.6	397
68	Efficient non-fullerene organic solar cells employing sequentially deposited donor–acceptor layers. Journal of Materials Chemistry A, 2018, 6, 18225-18233.	5.2	49
69	Ternary Organic Solar Cells With 12.8% Efficiency Using Two Nonfullerene Acceptors With Complementary Absorptions. Advanced Energy Materials, 2018, 8, 1800424.	10.2	90
70	Manipulating active layer morphology of molecular donor/polymer acceptor based organic solar cells through ternary blends. Science China Chemistry, 2018, 61, 1025-1033.	4.2	25
71	A chlorinated low-bandgap small-molecule acceptor for organic solar cells with 14.1% efficiency and low energy loss. Science China Chemistry, $2018, 61, 1307-1313$.	4.2	210
72	Cesium Halides-Assisted Crystal Growth of Perovskite Films for Efficient Planar Heterojunction Solar Cells. Chemistry of Materials, 2018, 30, 5264-5271.	3.2	30

#	Article	IF	Citations
73	Organic and solution-processed tandem solar cells with 17.3% efficiency. Science, 2018, 361, 1094-1098.	6.0	2,262
74	An Efficient Ternary Organic Solar Cell with a Porphyrin Based Small Molecule Donor and Two Fullerene Acceptors. Chinese Journal of Organic Chemistry, 2018, 38, 228.	0.6	3
75	Effects of alkyl chains on intermolecular packing and device performance in small molecule based organic solar cells. Dyes and Pigments, 2017, 141, 262-268.	2.0	11
76	A series of dithienobenzodithiophene based small molecules for highly efficient organic solar cells. Science China Chemistry, 2017, 60, 552-560.	4.2	16
77	Molecular Origin of Donor- and Acceptor-Rich Domain Formation in Bulk-Heterojunction Solar Cells with an Enhanced Charge Transport Efficiency. Journal of Physical Chemistry C, 2017, 121, 5864-5870.	1.5	18
78	Evaluation of Electron Donor Materials for Solutionâ€Processed Organic Solar Cells via a Novel Figure of Merit. Advanced Energy Materials, 2017, 7, 1700465.	10.2	114
79	Correlation between types of defects/vacancies of Bi2S3 nanostructures and their transient photocurrent. Nano Research, 2017, 10, 2405-2414.	5.8	8
80	Triperylene Hexaimides Based Allâ€Smallâ€Molecule Solar Cells with an Efficiency over 6% and Open Circuit Voltage of 1.04 V. Advanced Energy Materials, 2017, 7, 1601664.	10.2	57
81	Solution-processed organic tandem solar cells with power conversion efficiencies >12%. Nature Photonics, 2017, 11, 85-90.	15.6	510
82	Small Molecules with Asymmetric 4-Alkyl-8-alkoxybenzo[1,2- <i>b</i> :4,5- <i>b</i> ′]dithiophene as the Central Unit for High-Performance Solar Cells with High Fill Factors. Chemistry of Materials, 2017, 29, 3694-3703.	3.2	28
83	Small-Molecule Acceptor Based on the Heptacyclic Benzodi(cyclopentadithiophene) Unit for Highly Efficient Nonfullerene Organic Solar Cells. Journal of the American Chemical Society, 2017, 139, 4929-4934.	6.6	459
84	Developing high-performance small molecule organic solar cells via a large planar structure and an electron-withdrawing central unit. Chemical Communications, 2017, 53, 451-454.	2.2	22
85	A simple small molecule as the acceptor for fullerene-free organic solar cells. Science China Chemistry, 2017, 60, 366-369.	4.2	29
86	Assessing the stability of high performance solution processed small molecule solar cells. Solar Energy Materials and Solar Cells, 2017, 161, 368-376.	3.0	31
87	A-D-A-type small molecular acceptor with one hexyl-substituted thiophene as π bridge for fullerene-free organic solar cells. Science China Materials, 2017, 60, 49-56.	3.5	10
88	An A-D-A Type Small-Molecule Electron Acceptor with End-Extended Conjugation for High Performance Organic Solar Cells. Chemistry of Materials, 2017, 29, 7908-7917.	3.2	139
89	Processability: Evaluation of Electron Donor Materials for Solutionâ€Processed Organic Solar Cells via a Novel Figure of Merit (Adv. Energy Mater. 18/2017). Advanced Energy Materials, 2017, 7, .	10.2	0
90	Design and synthesis of low band gap non-fullerene acceptors for organic solar cells with impressively high Jsc over 21 mA cm_2. Science China Materials, 2017, 60, 819-828.	3.5	29

#	Article	IF	Citations
91	3-Dimensional non-fullerene acceptors based on triptycene and perylene diimide for organic solar cells. Organic Electronics, 2017, 50, 458-465.	1.4	11
92	New small-molecule acceptors based on hexacyclic naphthalene (cyclopentadithiophene) for efficient non-fullerene organic solar cells. Journal of Materials Chemistry A, 2017, 5, 17204-17210.	5.2	75
93	Impact of end-capped groups on the properties of dithienosilole-based small molecules for solution-processed organic solar cells. Dyes and Pigments, 2017, 147, 183-189.	2.0	20
94	A Threeâ€dimensional Nonâ€fullerene Small Molecule Acceptor for Solutionâ€processed Organic Solar Cells. Chinese Journal of Chemistry, 2017, 35, 1687-1692.	2.6	30
95	A New Nonfullerene Electron Acceptor with a Ladder Type Backbone for Highâ€Performance Organic Solar Cells. Advanced Materials, 2017, 29, 1604964.	11.1	289
96	Evaluation of Small Molecules as Front Cell Donor Materials for Highâ€Efficiency Tandem Solar Cells. Advanced Materials, 2016, 28, 7008-7012.	11.1	43
97	New Insights into the Correlation between Morphology, Excited State Dynamics, and Device Performance of Small Molecule Organic Solar Cells. Advanced Energy Materials, 2016, 6, 1600961.	10.2	34
98	Oligothiophene-based small molecules with 3,3′-difluoro-2,2′-bithiophene central unit for solution-processed organic solar cells. Organic Electronics, 2016, 38, 172-179.	1.4	8
99	High efficiency and stability small molecule solar cells developed by bulk microstructure fine-tuning. Nano Energy, 2016, 28, 241-249.	8.2	57
100	Nonfullerene Small Molecular Acceptors with a Three-Dimensional (3D) Structure for Organic Solar Cells. Chemistry of Materials, 2016, 28, 6770-6778.	3.2	57
101	A simple small molecule as an acceptor for fullerene-free organic solar cells with efficiency near 8%. Journal of Materials Chemistry A, 2016, 4, 10409-10413.	5.2	104
102	Oligothiophene based small molecules with a new end group for solution processed organic photovoltaics. Organic Electronics, 2016, 33, 71-77.	1.4	5
103	Diketopyrrolopyrrole based small molecules with near infrared absorption for solution processed organic solar cells. Dyes and Pigments, 2016, 126, 173-178.	2.0	18
104	Alkylthio substituted thiophene modified benzodithiophene-based highly efficient photovoltaic small molecules. Organic Electronics, 2016, 28, 263-268.	1.4	12
105	Fullerene-free small molecule organic solar cells with a high open circuit voltage of 1.15 V. Chemical Communications, 2016, 52, 465-468.	2.2	79
106	Dithienopyrrole Based Small Molecule with Low Band Gap for Organic Solar Cells. Chinese Journal of Chemistry, 2015, 33, 852-858.	2.6	15
107	Subtle Balance Between Length Scale of Phase Separation and Domain Purification in Smallâ€Molecule Bulkâ€Heterojunction Blends under Solvent Vapor Treatment. Advanced Materials, 2015, 27, 6296-6302.	11.1	159
108	Novel donor–acceptor polymers based on 7-perfluorophenyl-6H-[1,2,5]thiadiazole[3,4-g]benzoimidazole for bulk heterojunction solar cells. RSC Advances, 2015, 5, 50137-50145.	1.7	24

#	Article	IF	CITATIONS
109	A low bandgap carbazole based small molecule for organic solar cells. Organic Electronics, 2015, 24, 89-95.	1.4	16
110	A perylene diimide (PDI)-based small molecule with tetrahedral configuration as a non-fullerene acceptor for organic solar cells. Journal of Materials Chemistry C, 2015, 3, 4698-4705.	2.7	180
111	Investigation of the enhanced performance and lifetime of organic solar cells using solution-processed carbon dots as the electron transport layers. Journal of Materials Chemistry C, 2015, 3, 12403-12409.	2.7	28
112	A small molecule with selenophene as the central block for high performance solution-processed organic solar cells. Organic Electronics, 2015, 19, 98-104.	1.4	13
113	Benzo[1,2-b:4,5-b′]dithiophene (BDT)-based small molecules for solution processed organic solar cells. Journal of Materials Chemistry A, 2015, 3, 4765-4776.	5.2	117
114	A–D–A small molecules for solution-processed organic photovoltaic cells. Chemical Communications, 2015, 51, 4936-4950.	2.2	188
115	A new oligobenzodithiophene end-capped with 3-ethyl-rhodanine groups for organic solar cells with high open-circuit voltage. Science China Chemistry, 2015, 58, 339-346.	4.2	23
116	Investigation of the effect of large aromatic fusion in the small molecule backbone on the solar cell device fill factor. Journal of Materials Chemistry A, 2015, 3, 16679-16687.	5.2	26
117	Device characterization and optimization of small molecule organic solar cells assisted by modelling simulation of the current–voltage characteristics. Physical Chemistry Chemical Physics, 2015, 17, 19261-19267.	1.3	2
118	A Series of Simple Oligomer-like Small Molecules Based on Oligothiophenes for Solution-Processed Solar Cells with High Efficiency. Journal of the American Chemical Society, 2015, 137, 3886-3893.	6.6	788
119	Large active layer thickness toleration of high-efficiency small molecule solar cells. Journal of Materials Chemistry A, 2015, 3, 22274-22279.	5.2	19
120	A solution-processed high performance organic solar cell using a small molecule with the thieno [3,2-b] thiophene central unit. Chemical Communications, 2015, 51, 15268-15271.	2.2	48
121	Dithienosilole-Based Small-Molecule Organic Solar Cells with an Efficiency over 8%: Investigation of the Relationship between the Molecular Structure and Photovoltaic Performance. Chemistry of Materials, 2015, 27, 6077-6084.	3.2	92
122	Enhancement of Performance and Mechanism Studies of All-Solution Processed Small-Molecule based Solar Cells with an Inverted Structure. ACS Applied Materials & Solar Cells with an Inverted Structure. ACS Applied Materials & Solar Cells with an Inverted Structure. ACS Applied Materials & Solar Cells with an Inverted Structure.	4.0	12
123	Small Molecules Based on Alkyl/Alkylthio-thieno[3,2- <i>b</i> jlthiophene-Substituted Benzo[1,2- <i>b</i> ells with High Performance. Chemistry of Materials, 2015, 27, 8414-8423.	3.2	71
124	Small-molecule solar cells with efficiency over 9%. Nature Photonics, 2015, 9, 35-41.	15.6	769
125	Impact of fluorinated end groups on the properties of acceptor–donor–acceptor type oligothiophenes for solution-processed photovoltaic cells. Journal of Materials Chemistry C, 2014, 2, 1337-1345.	2.7	19
126	Impact of the Electronâ€Transport Layer on the Performance of Solutionâ€Processed Smallâ€Molecule Organic Solar Cells. ChemSusChem, 2014, 7, 2358-2364.	3.6	40

#	Article	IF	Citations
127	Solution-Processed Organic Solar Cells Based on Dialkylthiol-Substituted Benzodithiophene Unit with Efficiency near 10%. Journal of the American Chemical Society, 2014, 136, 15529-15532.	6.6	670
128	High-efficiency solution-processed small-molecule solar cells featuring gold nanoparticles. Journal of Materials Chemistry A, 2014, 2, 19988-19993.	5.2	9
129	The synthesis of 5-alkyl[3,4-c]thienopyrrole-4,6-dione-based polymers using a Pd-catalyzed oxidative C–H/C–H homopolymerization reaction. Chemical Communications, 2014, 50, 12497-12499.	2.2	38
130	Effect of thermal annealing on active layer morphology and performance for small molecule bulk heterojunction organic solar cells. Journal of Materials Chemistry C, 2014, 2, 7247-7255.	2.7	70
131	A high-performance photovoltaic small molecule developed by modifying the chemical structure and optimizing the morphology of the active layer. RSC Advances, 2014, 4, 31977-31980.	1.7	54
132	Open-circuit voltage up to 1.07V for solution processed small molecule based organic solar cells. Organic Electronics, 2014, 15, 2285-2294.	1.4	32
133	A novel glycopolymeric ultraviolet absorber covering UV-A and UV-B ranges. RSC Advances, 2014, 4, 22617.	1.7	8
134	Synthesis and photovoltaic properties of novel C60 bisadducts based on benzo [2,1,3]-thiadiazole. Tetrahedron, 2014, 70, 6217-6221.	1.0	22
135	High Performance Photovoltaic Applications Using Solution-Processed Small Molecules. Accounts of Chemical Research, 2013, 46, 2645-2655.	7.6	624
136	Graphene quantum dots as the hole transport layer material for high-performance organic solar cells. Physical Chemistry Chemical Physics, 2013, 15, 18973.	1.3	113
137	Efficient small molecule bulk heterojunction solar cells with high fill factors via introduction of π-stacking moieties as end group. Journal of Materials Chemistry A, 2013, 1, 1801-1809.	5.2	96
138	A round robin study of polymer solar cells and small modules across China. Solar Energy Materials and Solar Cells, 2013, 117, 382-389.	3.0	10
139	Improved efficiency of solution processed small molecules organic solar cells using thermal annealing. Organic Electronics, 2013, 14, 1562-1569.	1.4	26
140	Investigation of Quinquethiophene Derivatives with Different End Groups for High Open Circuit Voltage Solar Cells. Advanced Energy Materials, 2013, 3, 639-646.	10.2	65
141	Preparation and electrochemistry properties of trifunctional 1,9-dithiophenalenylium salt and its neutral radical with benzene spacer. Tetrahedron, 2013, 69, 6890-6896.	1.0	5
142	Solution-processable graphene mesh transparent electrodes for organic solar cells. Nano Research, 2013, 6, 478-484.	5.8	53
143	Solution-Processed and High-Performance Organic Solar Cells Using Small Molecules with a Benzodithiophene Unit. Journal of the American Chemical Society, 2013, 135, 8484-8487.	6.6	675
144	Graphene for Transparent Electrodes and Organic Electronic Devices. Green Energy and Technology, 2013, , 81-102.	0.4	0

#	Article	IF	Citations
145	Efficient and Large Scale Synthesis of Graphene from Coal and Its Film Electrical Properties Studies. Journal of Nanoscience and Nanotechnology, 2013, 13, 929-932.	0.9	48
146	Bromination of Isothianaphthene Derivatives towards the Application in Organic Electronics. Chinese Journal of Chemistry, 2013, 31, 1391-1396.	2.6	5
147	Small Molecules Based on Benzo[1,2-b:4,5-b′]dithiophene Unit for High-Performance Solution-Processed Organic Solar Cells. Journal of the American Chemical Society, 2012, 134, 16345-16351.	6.6	563
148	Impact of dye end groups on acceptor–donor–acceptor type molecules for solution-processed photovoltaic cells. Journal of Materials Chemistry, 2012, 22, 9173.	6.7	69
149	Isothianaphtheneâ€Based Conjugated Polymers for Organic Photovoltaic Cells. Macromolecular Chemistry and Physics, 2012, 213, 1596-1603.	1.1	7
150	Focusing on Energy and Optoelectronic Applications: A Journey for Graphene and Graphene Oxide at Large Scale. Accounts of Chemical Research, 2012, 45, 598-607.	7.6	310
151	Solution Processable Rhodanineâ€Based Small Molecule Organic Photovoltaic Cells with a Power Conversion Efficiency of 6.1%. Advanced Energy Materials, 2012, 2, 74-77.	10.2	303
152	Different donor–acceptor structures of dithiafulvalene-fused semiconducting polymers with different band gaps. Chemical Communications, 2011, 47, 10401.	2.2	22
153	A Planar Small Molecule with Dithienosilole Core for High Efficiency Solution-Processed Organic Photovoltaic Cells. Chemistry of Materials, 2011, 23, 4666-4668.	3.2	210
154	Graphene-based conducting inks for direct inkjet printing of flexible conductive patterns and their applications in electric circuits and chemical sensors. Nano Research, 2011, 4, 675-684.	5.8	397
155	Synthesis and properties of copolymers based on 5,6-dinitrobenzothiadiazole with low band gap and broad absorption spectra. Science China Chemistry, 2011, 54, 617-624.	4.2	1
156	Synthesis and Crystal Structure of a Dinuclear Silver(I) Metallocyclophane with Nâ€Heterocyclic Carbene Linkage. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2011, 637, 34-36.	0.6	3
157	Synthesis and Photovoltaic Properties of a Poly(2,7â€carbazole) Derivative Based on Dithienosilole and Benzothiadiazole. Macromolecular Chemistry and Physics, 2011, 212, 1109-1114.	1.1	11
158	Graphene – A Promising Material for Organic Photovoltaic Cells. Advanced Materials, 2011, 23, 5342-5358.	11.1	242
159	Highâ€Performance Solar Cells using a Solutionâ€Processed Small Molecule Containing Benzodithiophene Unit. Advanced Materials, 2011, 23, 5387-5391.	11.1	271
160	Spinâ€Coated Small Molecules for High Performance Solar Cells. Advanced Energy Materials, 2011, 1, 771-775.	10.2	233
161	Synthesis of neutral stable polyradicals and their application on photovoltaic devices. European Polymer Journal, 2011, 47, 1018-1030.	2.6	10
162	Organic radicals based on phenalenyl and verdazyl units. Tetrahedron Letters, 2011, 52, 3670-3673.	0.7	11

#	Article	IF	Citations
163	Towards flexible all-carbon electronics: Flexible organic field-effect transistors and inverter circuits using solution-processed all-graphene source/drain/gate electrodes. Nano Research, 2010, 3, 714-721.	5.8	50
164	Selective Tuning of the HOMO–LUMO Gap of Carbazoleâ€Based Donor–Acceptor–Donor Compounds toward Different Emission Colors. European Journal of Organic Chemistry, 2010, 2010, 1681-1687.	1.2	68
165	Synthesis of New Conjugated CNPPV Derivatives Containing Different Lengths of Oligothiophene Units for Organic Solar Cells. Macromolecular Chemistry and Physics, 2010, 211, 2503-2509.	1.1	7
166	Phenalenyl-based boron–fluorine complexes: Synthesis, crystal structures and solid-state fluorescence properties. Journal of Molecular Structure, 2010, 968, 85-88.	1.8	18
167	Controlled synthesis of few-layered graphene sheets on a large scale using chemical exfoliation. Carbon, 2010, 48, 2367-2371.	5.4	156
168	Polymer photovoltaic devices with transparent graphene electrodes produced by spin-casting. Carbon, 2010, 48, 3308-3311.	5.4	100
169	Self-assembly based on heterotriangulene derivatives: from nanowires to microrods. New Journal of Chemistry, 2010, 34, 661.	1.4	10
170	Efficient solution processed bulk-heterojunction solar cells based a donor–acceptor oligothiophene. Journal of Materials Chemistry, 2010, 20, 2464.	6.7	103
171	Synthesis, Characterization and Nonlinear Optical Property of Graphene-C ₆₀ Hybrid. Journal of Nanoscience and Nanotechnology, 2009, 9, 5752-5756.	0.9	29
172	Semiconducting Oligoâ€(Aryleneethynylene)s with Coplanarity of Main Chain and Tetrathiafulvalene (TTF) Side Chains: Synthesis, Selfâ€Assembly, and Conductive Properties. Macromolecular Chemistry and Physics, 2009, 210, 1044-1051.	1.1	2
173	Two-level self-assembly from nanowires to microrods based on a heterotriangulene derivative. Chemical Physics Letters, 2009, 479, 117-119.	1.2	13
174	A hybrid material of graphene and poly (3,4-ethyldioxythiophene) with high conductivity, flexibility, and transparency. Nano Research, 2009, 2, 343-348.	5.8	320
175	Synthesis and Crystal Structure of Mercury(II) Metal Crown Ether with N-Heterocyclic Carbene Linkage. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2009, 635, NA-NA.	0.6	1
176	Photoconductivity of Bulkâ€Filmâ€Based Graphene Sheets. Small, 2009, 5, 1682-1687.	5.2	80
177	Synthesis, characterization, and electroluminescent properties of star shaped donor–acceptor dendrimers with carbazole dendrons as peripheral branches and heterotriangulene as central core. Tetrahedron, 2009, 65, 4455-4463.	1.0	59
178	Synthesis and properties of acceptor–donor–acceptor molecules based on oligothiophenes with tunable and low band gap. Tetrahedron, 2009, 65, 5209-5215.	1.0	71
179	Synthesis, characterization and optical limiting property of covalently oligothiophene-functionalized graphene material. Carbon, 2009, 47, 3113-3121.	5.4	218
180	A phenalenyl-based neutral stable π-conjugated polyradical. Synthetic Metals, 2009, 159, 1772-1777.	2.1	8

#	Article	IF	CITATIONS
181	An Areneâ^'Mercury(II) N-Heterocyclic Carbene Complex. Organometallics, 2009, 28, 5590-5592.	1.1	23
182	A Novel Poly(aryleneethynylene) with Tetrathiafulvalene (TTF) Side Chains: Synthesis, Selfâ€Assembly, and Electroactive Property. Macromolecular Rapid Communications, 2008, 29, 719-723.	2.0	12
183	Synthesis and crystal structure of 5,12-diphenyl-6,11-bis(thien-2-yl)tetracene. Journal of Molecular Structure, 2008, 889, 265-270.	1.8	12
184	A Novel Tetrathiafulvalene- (TTF-) Fused Poly(aryleneethynylene) with an Acceptor Main Chain and Donor Side Chains: Intramolecular Charge Transfer (CT), Stacking Structure, and Photovoltaic Property. Macromolecules, 2008, 41, 3114-3119.	2.2	38
185	2,5,8-Tri-tert-butyl-1,3,4,6,7,9-hexaazaphenalene: Synthesis, Crystal Structure and Calculation of Homolytic N–H Bond Dissociation Enthalpies. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2008, 63, 1425-1430.	0.3	3
186	3-tert-Butyl-5,6,8-trinitronaphtho[1,8a,8-cd][1,2]dithiole. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o830-o830.	0.2	1
187	Finely modulated asymmetric nonfullerene acceptors enabling simultaneously improved voltage and current for efficient organic solar cells. Journal of Materials Chemistry C, 0, , .	2.7	0
188	Pyreneâ€Based Dopantâ€Free Holeâ€Transport Polymers with Fluorine Induced Favorable Molecular Stacking Enable Efficient Perovskite Solar Cells. Angewandte Chemie, 0, , .	1.6	4