## Hans-Peter E Kohler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1277022/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                         | IF    | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|
| 1  | Enzymatic synthesis and formation kinetics of mono- and di-hydroxylated chlorinated paraffins with the bacterial dehalogenase LinB from Sphingobium indicum. Chemosphere, 2022, 291, 132939.                                                                    | 4.2   | 7         |
| 2  | Substrate-Specific Coupling of O <sub>2</sub> Activation to Hydroxylations of Aromatic Compounds by Rieske Non-heme Iron Dioxygenases. ACS Catalysis, 2022, 12, 6444-6456.                                                                                      | 5.5   | 10        |
| 3  | Elucidating the Role of O <sub>2</sub> Uncoupling in the Oxidative Biodegradation of Organic<br>Contaminants by Rieske Non-heme Iron Dioxygenases. ACS Environmental Au, 2022, 2, 428-440.                                                                      | 3.3   | 7         |
| 4  | Transformation of ε-HBCD with the Sphingobium Indicum enzymes LinA1, LinA2 and LinATM, a triple<br>mutant of LinA2. Chemosphere, 2021, 267, 129217.                                                                                                             | 4.2   | 6         |
| 5  | Transformation of short-chain chlorinated paraffins by the bacterial haloalkane dehalogenase LinB –<br>Formation of mono- and di-hydroxylated metabolites. Chemosphere, 2021, 262, 128288.                                                                      | 4.2   | 19        |
| 6  | Transformation of short-chain chlorinated paraffins and olefins with the bacterial dehalogenase<br>LinB from Sphingobium Indicum – Kinetic models for the homologue-specific conversion of reactive<br>and persistent material. Chemosphere, 2021, 283, 131199. | 4.2   | 11        |
| 7  | Quantification of Synthetic Polyesters from Biodegradable Mulch Films in Soils. Environmental<br>Science & Technology, 2020, 54, 266-275.                                                                                                                       | 4.6   | 56        |
| 8  | Enzyme Kinetics of Organic Contaminant Oxygenations. Chimia, 2020, 74, 108.                                                                                                                                                                                     | 0.3   | 6         |
| 9  | Dos and Do Nots When Assessing the Biodegradation of Plastics. Environmental Science &<br>Technology, 2019, 53, 9967-9969.                                                                                                                                      | 4.6   | 87        |
| 10 | <i>Aminobacter</i> sp. MSH1 Mineralizes the Groundwater Micropollutant 2,6-Dichlorobenzamide<br>through a Unique Chlorobenzoate Catabolic Pathway. Environmental Science & Technology, 2019,<br>53, 10146-10156.                                                | 4.6   | 11        |
| 11 | Kinetic Isotope Effects of the Enzymatic Transformation of γ-Hexachlorocyclohexane by the Lindane<br>Dehydrochlorinase Variants LinA1 and LinA2. Environmental Science & Technology, 2019, 53,<br>2353-2363.                                                    | 4.6   | 23        |
| 12 | Assessing Aerobic Biotransformation of Hexachlorocyclohexane Isomers by Compound-Specific<br>Isotope Analysis. Environmental Science & Technology, 2019, 53, 7419-7431.                                                                                         | 4.6   | 20        |
| 13 | Modelling carbofuran biotransformation by <i>Novosphingobium</i> sp. KN65.2 in the presence of coincidental carbon and indigenous microbes. Environmental Science: Water Research and Technology, 2019, 5, 798-807.                                             | 1.2   | 7         |
| 14 | Biotransformation of short-chain chlorinated paraffins (SCCPs) with LinA2: A HCH and HBCD converting bacterial dehydrohalogenase. Chemosphere, 2019, 226, 744-754.                                                                                              | 4.2   | 31        |
| 15 | Assessing the environmental transformation of nanoplastic through 13C-labelled polymers. Nature<br>Nanotechnology, 2019, 14, 301-303.                                                                                                                           | 15.6  | 41        |
| 16 | Photochemical Transformation of Poly(butylene adipate- <i>co</i> -terephthalate) and Its Effects on<br>Enzymatic Hydrolyzability. Environmental Science & Technology, 2019, 53, 2472-2481.                                                                      | 4.6   | 45        |
| 17 | Labeling and Protecting <i>N</i> â€Terminal Protein Positions by <i>β</i> â€Peptidyl Aminopeptidaseâ€Catalyzed<br>Attachment of <i>β</i> â€Aminoâ€Acid Residues – Insulin as a First Example. Helvetica Chimica Acta, 2018, 101<br>e1700259.                    | .,1.0 | 3         |
| 18 | Ion Trapping of Amines in Protozoa: A Novel Removal Mechanism for Micropollutants in Activated Sludge. Environmental Science & Technology, 2018, 52, 52-60.                                                                                                     | 4.6   | 37        |

| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Isolation of the (+)-Pinoresinol-Mineralizing Pseudomonas sp. Strain SG-MS2 and Elucidation of Its<br>Catabolic Pathway. Applied and Environmental Microbiology, 2018, 84, .                                                      | 1.4 | 15        |
| 20 | Biodegradation of synthetic polymers in soils: Tracking carbon into CO <sub>2</sub> and microbial biomass. Science Advances, 2018, 4, eaas9024.                                                                                   | 4.7 | 284       |
| 21 | Kinetics and stereochemistry of LinB-catalyzed δ-HBCD transformation: Comparison of inÂvitro and in silico results. Chemosphere, 2018, 207, 118-129.                                                                              | 4.2 | 15        |
| 22 | Catabolism of the groundwater micropollutant 2,6-dichlorobenzamide beyond 2,6-dichlorobenzoate<br>is plasmid encoded in Aminobacter sp. MSH1. Applied Microbiology and Biotechnology, 2018, 102,<br>7963-7979.                    | 1.7 | 15        |
| 23 | High-Throughput Analysis of Enzymatic Hydrolysis of Biodegradable Polyesters by Monitoring<br>Cohydrolysis of a Polyester-Embedded Fluorogenic Probe. Environmental Science & Technology,<br>2017, 51, 4358-4367.                 | 4.6 | 35        |
| 24 | Important amino acid residues of hexachlorocyclohexane dehydrochlorinases (LinA) for<br>enantioselective transformation of hexachlorocyclohexane isomers. Biodegradation, 2017, 28, 171-180.                                      | 1.5 | 9         |
| 25 | Biotransformation of hexabromocyclododecanes with hexachlorocyclohexane-transforming Sphingobium chinhatense strain IP26. Chemosphere, 2017, 182, 491-500.                                                                        | 4.2 | 22        |
| 26 | Enzymatic Hydrolysis of Polyester Thin Films at the Nanoscale: Effects of Polyester Structure and<br>Enzyme Active-Site Accessibility. Environmental Science & Technology, 2017, 51, 7476-7485.                                   | 4.6 | 89        |
| 27 | FMNH2-dependent monooxygenases initiate catabolism of sulfonamides in Microbacterium sp. strain<br>BR1 subsisting on sulfonamide antibiotics. Scientific Reports, 2017, 7, 15783.                                                 | 1.6 | 66        |
| 28 | Characterization of Substrate, Cosubstrate, and Product Isotope Effects Associated With Enzymatic<br>Oxygenations of Organic Compounds Based on Compound-Specific Isotope Analysis. Methods in<br>Enzymology, 2017, 596, 291-329. | 0.4 | 9         |
| 29 | Substrate and Enzyme Specificity of the Kinetic Isotope Effects Associated with the Dioxygenation of Nitroaromatic Contaminants. Environmental Science & Technology, 2016, 50, 6708-6716.                                         | 4.6 | 27        |
| 30 | Laboratory and field scale bioremediation of hexachlorocyclohexane (HCH) contaminated soils by means of bioaugmentation and biostimulation. Biodegradation, 2016, 27, 179-193.                                                    | 1.5 | 39        |
| 31 | Systematic Exploration of Biotransformation Reactions of Amine-Containing Micropollutants in Activated Sludge. Environmental Science & amp; Technology, 2016, 50, 2908-2920.                                                      | 4.6 | 111       |
| 32 | Enzymatic Hydrolysis of Polyester Thin Films: Real-Time Analysis of Film Mass Changes and Dissipation Dynamics. Environmental Science & Technology, 2016, 50, 197-206.                                                            | 4.6 | 34        |
| 33 | Stereochemistry of enzymatic transformations of (+)β- and (â^')β-HBCD with LinA2 – A HCH-degrading bacterial enzyme of Sphingobium indicum B90A. Chemosphere, 2015, 122, 70-78.                                                   | 4.2 | 18        |
| 34 | Association of Biodiversity with the Rates of Micropollutant Biotransformations among Full-Scale<br>Wastewater Treatment Plant Communities. Applied and Environmental Microbiology, 2015, 81, 666-675.                            | 1.4 | 98        |
| 35 | Degradation of sulfonamide antibiotics by Microbacterium sp. strain BR1 – elucidating the downstream pathway. New Biotechnology, 2015, 32, 710-715.                                                                               | 2.4 | 37        |
| 36 | A Model Framework to Describe Growth-Linked Biodegradation of Trace-Level Pollutants in the<br>Presence of Coincidental Carbon Substrates and Microbes. Environmental Science & Technology,<br>2014, 48, 13358-13366.             | 4.6 | 19        |

| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | LinA2, a HCH-converting bacterial enzyme that dehydrohalogenates HBCDs. Chemosphere, 2014, 107, 194-202.                                                                                                                         | 4.2 | 33        |
| 38 | Kinetics and Yields of Pesticide Biodegradation at Low Substrate Concentrations and under<br>Conditions Restricting Assimilable Organic Carbon. Applied and Environmental Microbiology, 2014, 80,<br>1306-1313.                  | 1.4 | 37        |
| 39 | Emerging chemicals and the evolution of biodegradation capacities and pathways in bacteria. Current<br>Opinion in Biotechnology, 2014, 27, 8-14.                                                                                 | 3.3 | 82        |
| 40 | Small <sup>13</sup> C/ <sup>12</sup> C Fractionation Contrasts with Large Enantiomer Fractionation<br>in Aerobic Biodegradation of Phenoxy Acids. Environmental Science & Technology, 2014, 48,<br>5501-5511.                    | 4.6 | 31        |
| 41 | Isotope Effects of Enzymatic Dioxygenation of Nitrobenzene and 2-Nitrotoluene by Nitrobenzene<br>Dioxygenase. Environmental Science & Technology, 2014, 48, 10750-10759.                                                         | 4.6 | 24        |
| 42 | Slow Biotransformation of Carbon Nanotubes by Horseradish Peroxidase. Environmental Science & amp; Technology, 2014, 48, 4826-4834.                                                                                              | 4.6 | 77        |
| 43 | Genetic and metabolic analysis of the carbofuran catabolic pathway in Novosphingobium sp. KN65.2.<br>Applied Microbiology and Biotechnology, 2014, 98, 8235-8252.                                                                | 1.7 | 55        |
| 44 | Column studies to assess the effects of climate variables on redox processes during riverbank filtration. Water Research, 2014, 61, 263-275.                                                                                     | 5.3 | 32        |
| 45 | Is biological treatment a viable alternative for micropollutant removal in drinking water treatment processes?. Water Research, 2013, 47, 5955-5976.                                                                             | 5.3 | 275       |
| 46 | Stereochemistry of LinB-catalyzed biotransformation of δ-HBCD to<br>1R,2R,5S,6R,9R,10S-pentabromocyclododecanol. Chemosphere, 2013, 90, 1911-1919.                                                                               | 4.2 | 27        |
| 47 | NOM degradation during river infiltration: Effects of the climate variables temperature and discharge. Water Research, 2013, 47, 6585-6595.                                                                                      | 5.3 | 39        |
| 48 | Metabolomics of hexachlorocyclohexane ( <scp>HCH</scp> ) transformation: ratio of <scp>LinA</scp><br>to <scp>LinB</scp> determines metabolic fate of <scp>HCH</scp> isomers. Environmental<br>Microbiology, 2013, 15, 1040-1049. | 1.8 | 38        |
| 49 | <i>ipso</i> -Hydroxylation and Subsequent Fragmentation: a Novel Microbial Strategy To Eliminate<br>Sulfonamide Antibiotics. Applied and Environmental Microbiology, 2013, 79, 5550-5558.                                        | 1.4 | 105       |
| 50 | Enantioselective Dehydrochlorination of δ-Hexachlorocyclohexane and δ-Pentachlorocyclohexene by<br>LinA1 and LinA2 from Sphingobium indicum B90A. Applied and Environmental Microbiology, 2013, 79,<br>6180-6183.                | 1.4 | 8         |
| 51 | Bacterial <i>β</i> â€Aminopeptidases: Structural Insights and Applications for Biocatalysis. Chemistry and<br>Biodiversity, 2012, 9, 2388-2409.                                                                                  | 1.0 | 12        |
| 52 | The activity level of a microbial community function can be predicted from its metatranscriptome.<br>ISME Journal, 2012, 6, 902-904.                                                                                             | 4.4 | 70        |
| 53 | Formation of Toxic 2-Nonyl- <i>p</i> -Benzoquinones from α-Tertiary 4-Nonylphenol Isomers during<br>Microbial Metabolism of Technical Nonylphenol. Environmental Science & Technology, 2012, 46,<br>5979-5987.                   | 4.6 | 13        |
| 54 | Biotransformation of Hexabromocyclododecanes (HBCDs) with LinB—An HCH-Converting Bacterial Enzyme. Environmental Science & Technology, 2012, 46, 6566-6574.                                                                      | 4.6 | 61        |

| #  | Article                                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Enzymatic Conversion of ε-Hexachlorocyclohexane and a Heptachlorocyclohexane Isomer, Two<br>Neglected Components of Technical Hexachlorocyclohexane. Environmental Science &<br>Technology, 2012, 46, 4051-4058.                                                                  | 4.6 | 35        |
| 56 | Crystal Structures of BapA Complexes with βâ€Lactamâ€Derived Inhibitors Illustrate Substrate Specificity<br>and Enantioselectivity of βâ€Aminopeptidases. ChemBioChem, 2012, 13, 2137-2145.                                                                                       | 1.3 | 5         |
| 57 | Autoproteolytic and Catalytic Mechanisms for the β-Aminopeptidase BapA—A Member of the Ntn<br>Hydrolase Family. Structure, 2012, 20, 1850-1860.                                                                                                                                   | 1.6 | 14        |
| 58 | An unexpected gene cluster for downstream degradation of alkylphenols in Sphingomonas sp. strain<br>TTNP3. Applied Microbiology and Biotechnology, 2012, 93, 1315-1324.                                                                                                           | 1.7 | 10        |
| 59 | Purification and characterization of hydroquinone dioxygenase from Sphingomonas sp. strain TTNP3.<br>AMB Express, 2011, 1, 8.                                                                                                                                                     | 1.4 | 27        |
| 60 | Occurrence and sources of selected phenolic endocrine disruptors in Ria de Aveiro, Portugal.<br>Environmental Science and Pollution Research, 2010, 17, 834-843.                                                                                                                  | 2.7 | 129       |
| 61 | Anaerobic testosterone degradation in Steroidobacter denitrificans – Identification of transformation products. Environmental Pollution, 2010, 158, 2572-2581.                                                                                                                    | 3.7 | 51        |
| 62 | Simple enzymatic procedure for <scp>l</scp> â€carnosine synthesis: wholeâ€cell biocatalysis and efficient<br>biocatalyst recycling. Microbial Biotechnology, 2010, 3, 74-83.                                                                                                      | 2.0 | 34        |
| 63 | βâ€Aminopeptidaseâ€Catalyzed Biotransformations of β <sup>2</sup> â€Dipeptides: Kinetic Resolution and<br>Enzymatic Coupling. ChemBioChem, 2010, 11, 1129-1136.                                                                                                                   | 1.3 | 18        |
| 64 | The Missing Link in Linear Alkylbenzenesulfonate Surfactant Degradation: 4-Sulfoacetophenone as a<br>Transient Intermediate in the Degradation of 3-(4-Sulfophenyl)Butyrate by <i>Comamonas<br/>testosteroni</i> KF-1. Applied and Environmental Microbiology, 2010, 76, 196-202. | 1.4 | 14        |
| 65 | Biochemistry of Microbial Degradation of Hexachlorocyclohexane and Prospects for Bioremediation.<br>Microbiology and Molecular Biology Reviews, 2010, 74, 58-80.                                                                                                                  | 2.9 | 331       |
| 66 | Transformation of β-Lactam Antibacterial Agents during Aqueous Ozonation: Reaction Pathways and<br>Quantitative Bioassay of Biologically-Active Oxidation Products. Environmental Science &<br>Technology, 2010, 44, 5940-5948.                                                   | 4.6 | 92        |
| 67 | High-Throughput Identification of Microbial Transformation Products of Organic Micropollutants.<br>Environmental Science & Technology, 2010, 44, 6621-6627.                                                                                                                       | 4.6 | 250       |
| 68 | Structure-Based Interpretation of Biotransformation Pathways of Amide-Containing Compounds in Sludge-Seeded Bioreactors. Environmental Science & amp; Technology, 2010, 44, 6628-6635.                                                                                            | 4.6 | 93        |
| 69 | Transformation of β-lactam Antibacterial Agents during Aqueous Ozonation: Reaction Pathways and<br>Quantitative Bioassay of Biologically-Active Oxidation Products. Environmental Science &<br>Technology, 2010, 44, 8790-8790.                                                   | 4.6 | 6         |
| 70 | Biotransformation of Selected Iodinated X-ray Contrast Media and Characterization of Microbial Transformation Pathways. Environmental Science & amp; Technology, 2010, 44, 4998-5007.                                                                                             | 4.6 | 109       |
| 71 | Environmental fate of phenolic endocrine disruptors: field and laboratory studies. Philosophical<br>Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 3941-3963.                                                                                | 1.6 | 50        |
|    |                                                                                                                                                                                                                                                                                   |     |           |

Kinetic Resolution of Aliphatic βâ€Amino Acid Amides by βâ€Aminopeptidases. ChemBioChem, 2009, 10, 1558-15£3.
40

| #  | Article                                                                                                                                                                                                                                                                                                 | IF         | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|
| 73 | Mass flows of endocrine disruptors in the Glatt River during varying weather conditions.<br>Environmental Pollution, 2009, 157, 714-723.                                                                                                                                                                | 3.7        | 128       |
| 74 | lsomer-Specific Determination of 4-Nonylphenols Using Comprehensive Two-Dimensional Gas<br>Chromatography/Time-of-Flight Mass Spectrometry. Environmental Science & Technology, 2009, 43,<br>9306-9313.                                                                                                 | 4.6        | 64        |
| 75 | Oxidation of Antibacterial Compounds by Ozone and Hydroxyl Radical: Elimination of Biological<br>Activity during Aqueous Ozonation Processes. Environmental Science & Technology, 2009, 43,<br>2498-2504.                                                                                               | 4.6        | 233       |
| 76 | Isomer-Specific Degradation and Endocrine Disrupting Activity of Nonylphenols. Environmental Science & Technology, 2008, 42, 6399-6408.                                                                                                                                                                 | 4.6        | 107       |
| 77 | Occurrence and Mass Flows of Fluorochemicals in the Glatt Valley Watershed, Switzerland.<br>Environmental Science & Technology, 2008, 42, 6369-6377.                                                                                                                                                    | 4.6        | 159       |
| 78 | Temporal Trends, Congener Patterns, and Sources of Octa-, Nona-, and Decabromodiphenyl Ethers<br>(PBDE) and Hexabromocyclododecanes (HBCD) in Swiss Lake Sediments. Environmental Science &<br>Technology, 2008, 42, 6378-6384.                                                                         | 4.6        | 100       |
| 79 | New Metabolites in the Degradation of α- and γ-Hexachlorocyclohexane (HCH):<br>Pentachlorocyclohexenes Are Hydroxylated to Cyclohexenols and Cyclohexenediols by the<br>Haloalkane Dehalogenase LinB from Sphingobium indicum B90A. Journal of Agricultural and Food<br>Chemistry. 2008. 56. 6594-6603. | 2.4        | 41        |
| 80 | ipso-Substitution – A Novel Pathway for Microbial Metabolism of Endocrine-Disrupting<br>4-Nonylphenols, 4-Alkoxyphenols, and Bisphenol A. Chimia, 2008, 62, 358.                                                                                                                                        | 0.3        | 22        |
| 81 | Elucidation of the ipso -Substitution Mechanism for Side-Chain Cleavage of α-Quaternary<br>4-Nonylphenols and 4- t -Butoxyphenol in Sphingobium xenophagum Bayram. Applied and Environmental<br>Microbiology, 2007, 73, 3320-3326.                                                                      | 1.4        | 40        |
| 82 | Description of Sphingosinicella xenopeptidilytica sp. nov., a β-peptide-degrading species, and emended descriptions of the genus Sphingosinicella and the species Sphingosinicella microcystinivorans.<br>International Journal of Systematic and Evolutionary Microbiology, 2007, 57, 107-113.         | 0.8        | 41        |
| 83 | The historical record of PCB and PCDD/F deposition at Greifensee, a lake of the Swiss plateau, between 1848 and 1999. Chemosphere, 2007, 67, 1754-1761.                                                                                                                                                 | 4.2        | 61        |
| 84 | Hydroxylated Metabolites of β- and Β-Hexachlorocyclohexane: Bacterial Formation, Stereochemical<br>Configuration, and Occurrence in Groundwater at a Former Production Site. Environmental Science<br>& Technology, 2007, 41, 4292-4298.                                                                | 4.6        | 51        |
| 85 | Enzymeâ€Catalyzed Formation of <i>β</i> â€Peptides: <i>β</i> â€Peptidyl Aminopeptidases BapA and DmpA Acti<br>as <i>β</i> â€Peptideâ€Synthesizing Enzymes. Chemistry and Biodiversity, 2007, 4, 2016-2030.                                                                                              | ing<br>P.O | 39        |
| 86 | <i>ipso</i> â€Substitution: A General Biochemical and Biodegradation Mechanism to Cleave<br><i>α</i> â€Quaternary Alkylphenols and Bisphenol A. Chemistry and Biodiversity, 2007, 4, 2123-2137.                                                                                                         | 1.0        | 25        |
| 87 | Benzotriazole and Tolyltriazole as Aquatic Contaminants. 1. Input and Occurrence in Rivers and Lakes.<br>Environmental Science & Technology, 2006, 40, 7186-7192.                                                                                                                                       | 4.6        | 250       |
| 88 | Anaerobic degradation of brominated flame retardants in sewage sludge. Chemosphere, 2006, 64, 311-317.                                                                                                                                                                                                  | 4.2        | 189       |
| 89 | Bacterial ?-peptidyl aminopeptidases with unique substrate specificities for ?-oligopeptides and mixed ?,?-oligopeptides. FEBS Journal, 2006, 273, 5261-5272.                                                                                                                                           | 2.2        | 43        |
| 90 | Selective hydrolysis of the nitrile group of cis-dihydrodiols from aromatic nitriles. Journal of Molecular Catalysis B: Enzymatic, 2006, 38, 76-83.                                                                                                                                                     | 1.8        | 17        |

| #   | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Enzymatic Degradation ofβ- and Mixedα,β-Oligopeptides. Chemistry and Biodiversity, 2006, 3, 1325-1348.                                                                                                                                           | 1.0 | 55        |
| 92  | Purification and Characterization of Two Enantioselective α-Ketoglutarate-Dependent Dioxygenases,<br>RdpA and SdpA, from Sphingomonas herbicidovorans MH. Applied and Environmental Microbiology,<br>2006, 72, 4853-4861.                        | 1.4 | 52        |
| 93  | Haloalkane Dehalogenase LinB Is Responsible for β- and δ-Hexachlorocyclohexane Transformation in<br>Sphingobium indicum B90A. Applied and Environmental Microbiology, 2006, 72, 5720-5727.                                                       | 1.4 | 90        |
| 94  | Anaerobic Degradation of Decabromodiphenyl Ether. Environmental Science & Technology, 2005, 39, 1078-1083.                                                                                                                                       | 4.6 | 317       |
| 95  | Bacterial Cell Penetration by $\hat{I}^2$ 3-Oligohomoarginines: Indications for Passive Transfer through the Lipid Bilayer. ChemBioChem, 2005, 6, 982-985.                                                                                       | 1.3 | 40        |
| 96  | Differential Degradation of Nonylphenol Isomers by Sphingomonas xenophaga Bayram. Applied and<br>Environmental Microbiology, 2005, 71, 1123-1129.                                                                                                | 1.4 | 106       |
| 97  | A Novel β-Peptidyl Aminopeptidase (BapA) from Strain 3-2W4 Cleaves Peptide Bonds of Synthetic β-Tri- and<br>β-Dipeptides. Journal of Bacteriology, 2005, 187, 5910-5917.                                                                         | 1.0 | 37        |
| 98  | A Novel Metabolic Pathway for Degradation of 4-Nonylphenol Environmental Contaminants by<br>Sphingomonas xenophaga Bayram. Journal of Biological Chemistry, 2005, 280, 15526-15533.                                                              | 1.6 | 87        |
| 99  | Enantioselective Transformation of α-Hexachlorocyclohexane by the Dehydrochlorinases LinA1 and<br>LinA2 from the Soil Bacterium Sphingomonas paucimobilis B90A. Applied and Environmental<br>Microbiology, 2005, 71, 8514-8518.                  | 1.4 | 93        |
| 100 | Genetic Analysis of Phenoxyalkanoic Acid Degradation in Sphingomonas herbicidovorans MH. Applied and Environmental Microbiology, 2004, 70, 6066-6075.                                                                                            | 1.4 | 54        |
| 101 | Synthesis of 3-tert-butylcatechol by an engineered monooxygenase. Biotechnology and Bioengineering, 2003, 81, 518-524.                                                                                                                           | 1.7 | 31        |
| 102 | Crystallization and preliminary X-ray analysis of native and selenomethionine 2-hydroxybiphenyl<br>3-monooxygenase. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 741-743.                                             | 2.5 | 1         |
| 103 | Occurrence and Fate of Antibiotics as Trace Contaminants in Wastewaters, Sewage Sludges, and Surface Waters. Chimia, 2003, 57, 485-491.                                                                                                          | 0.3 | 259       |
| 104 | Changing the Substrate Reactivity of 2-Hydroxybiphenyl 3-Monooxygenase from Pseudomonas azelaica<br>HBP1 by Directed Evolution. Journal of Biological Chemistry, 2002, 277, 5575-5582.                                                           | 1.6 | 66        |
| 105 | Hydroxylation of Indole by Laboratory-evolved 2-Hydroxybiphenyl 3-Monooxygenase. Journal of<br>Biological Chemistry, 2002, 277, 34161-34167.                                                                                                     | 1.6 | 59        |
| 106 | Leaching and Primary Biodegradation of Sulfonated Naphthalenes and Their Formaldehyde<br>Condensates from Concrete Superplasticizers in Groundwater Affected by Tunnel Construction.<br>Environmental Science & Technology, 2002, 36, 3284-3289. | 4.6 | 28        |
| 107 | On the Biodegradation of β-Peptides Part of the PhD thesis of J.V.S. Dissertation no. 14298, ETH Zürich, 2001 ChemBioChem, 2002, 3, 424.                                                                                                         | 1.3 | 71        |
| 108 | Transcriptional Organization and Dynamic Expression of the hbpCAD Genes, Which Encode the First<br>Three Enzymes for 2-Hydroxybiphenyl Degradation in Pseudomonas azelaica HBP1. Journal of<br>Bacteriology, 2001, 183, 270-279.                 | 1.0 | 37        |

| #   | Article                                                                                                                                                                                                                                                                       | IF                | CITATIONS          |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------|
| 109 | Biotransformation of Various Substituted Aromatic Compounds to Chiral Dihydrodihydroxy Derivatives. Applied and Environmental Microbiology, 2001, 67, 3333-3339.                                                                                                              | 1.4               | 33                 |
| 110 | HbpR, a New Member of the XylR/DmpR Subclass within the NtrC Family of Bacterial Transcriptional<br>Activators, Regulates Expression of 2-Hydroxybiphenyl Metabolism in Pseudomonas azelaica HBP1.<br>Journal of Bacteriology, 2000, 182, 405-417.                            | 1.0               | 69                 |
| 111 | Effect of Chirality on the Microbial Degradation and the Environmental Fate of Chiral Pollutants.<br>Advances in Microbial Ecology, 2000, , 201-231.                                                                                                                          | 0.1               | 8                  |
| 112 | Catalytic Mechanism of 2-Hydroxybiphenyl 3-Monooxygenase, a Flavoprotein from Pseudomonas<br>azelaica HBP1. Journal of Biological Chemistry, 1999, 274, 33355-33365.                                                                                                          | 1.6               | 43                 |
| 113 | Aerobic biodegradation of chiral phenoxyalkanoic acid derivatives during incubations with activated sludge. FEMS Microbiology Ecology, 1999, 29, 197-204.                                                                                                                     | 1.3               | 14                 |
| 114 | Fate of the herbicides mecoprop, dichlorprop, and 2,4-D in aerobic and anaerobic sewage sludge as determined by laboratory batch studies and enantiomer-specific analysis. Biodegradation, 1999, 10, 271-278.                                                                 | 1.5               | 56                 |
| 115 | An integrated process for the production of toxic catechols from toxic phenols based on a designer biocatalyst. , 1999, 62, 641-648.                                                                                                                                          |                   | 75                 |
| 116 | <i>cis</i> -Chlorobenzene Dihydrodiol Dehydrogenase (TcbB) from <i>Pseudomonas</i> sp. Strain P51,<br>Expressed in <i>Escherichia coli</i> DH5α(pTCB149), Catalyzes Enantioselective Dehydrogenase<br>Reactions. Applied and Environmental Microbiology, 1999, 65, 5242-5246. | 1.4               | 20                 |
| 117 | Preparative scale production of 3-substituted catechols using a novel monooxygenase from<br>Pseudomonas azelaica HBP 1. Journal of Molecular Catalysis B: Enzymatic, 1998, 5, 87-93.                                                                                          | 1.8               | 62                 |
| 118 | E. coli JM109 pHBP461, a recombinant biocatalyst for the regioselective monohydroxylation of ortho-substituted phenols to their corresponding 3-substituted catechols. Journal of Molecular Catalysis B: Enzymatic, 1998, 5, 311-316.                                         | 1.8               | 13                 |
| 119 | Changes in the Enantiomeric Ratio of (R)- to (S)-Mecoprop Indicate in Situ Biodegradation of This<br>Chiral Herbicide in a Polluted Aquifer. Environmental Science & Technology, 1998, 32, 2070-2076.                                                                         | 4.6               | 84                 |
| 120 | Enantioselective Uptake and Degradation of the Chiral Herbicide Dichlorprop [( <i>RS</i> ) Tj ETQq0 0 0 rgBT /Ov<br>Bacteriology, 1998, 180, 3368-3374.                                                                                                                       | verlock 10<br>1.0 | Tf 50 307 Tc<br>67 |
| 121 | Purification and Characterization of 2-Hydroxybiphenyl 3-Monooxygenase, a Novel NADH-dependent,<br>FAD-containing Aromatic Hydroxylase from Pseudomonas azelaica HBP1. Journal of Biological<br>Chemistry, 1997, 272, 24257-24265.                                            | 1.6               | 73                 |
| 122 | The Broad Substrate Chlorobenzene Dioxygenase and cis-Chlorobenzene Dihydrodiol Dehydrogenase<br>of Pseudomonas sp. Strain P51 Are Linked Evolutionarily to the Enzymes for Benzene and Toluene<br>Degradation. Journal of Biological Chemistry, 1996, 271, 4009-4016.        | 1.6               | 122                |
| 123 | Degradation of 2-sec-butylphenol: 3-sec-butylcatechol,2-hydroxy-6-oxo-7-methylnona-2,4-dienoic acid, and 2-methylbutyric acid as intermediates. Biodegradation, 1993, 4, 81-89.                                                                                               | 1.5               | 12                 |
| 124 | 5'-Methylbenzimidazolyl-cobamides are the corrinoids from some sulfate-reducing and sulfur-metabolizing bacteria. FEBS Journal, 1988, 176, 461-469.                                                                                                                           | 0.2               | 49                 |
| 125 | Isolation of cobamides from Methanothrix soehngenii: 5-methylbenzimidazole as the ?-ligand of the predominant cobamide. Archives of Microbiology, 1988, 150, 219-223.                                                                                                         | 1.0               | 13                 |
| 126 | Carbon monoxide dehydrogenase and acetate thiokinase inMethanothrix soehngenii. FEMS<br>Microbiology Letters, 1984, 21, 287-292.                                                                                                                                              | 0.7               | 49                 |