Karnowo

List of Publications by Citations

Source: https://exaly.com/author-pdf/1276843/karnowo-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

76 ext. papers ext. citations 20 31 g-index 20 g-index

#	Paper	IF	Citations
69	Effects of volatiledhar interactions on the evolution of char structure during the gasification of Victorian brown coal in steam. <i>Fuel</i> , 2011 , 90, 1529-1535	7.1	124
68	Coke Formation during Thermal Treatment of Bio-oil. Energy & amp; Fuels, 2020, 34, 7863-7914	4.1	64
67	Copper-based catalysts with tunable acidic and basic sites for the selective conversion of levulinic acid/ester to Evalerolactone or 1,4-pentanediol. <i>Green Chemistry</i> , 2019 , 21, 4499-4511	10	63
66	The catalytic reforming of tar from pyrolysis and gasification of brown coal: Effects of parental carbon materials on the performance of char catalysts. <i>Fuel Processing Technology</i> , 2018 , 174, 142-148	7.2	52
65	Evolution of the functionalities and structures of biochar in pyrolysis of poplar in a wide temperature range. <i>Bioresource Technology</i> , 2020 , 304, 123002	11	50
64	Mini-Review on Char Catalysts for Tar Reforming during Biomass Gasification: The Importance of Char Structure. <i>Energy & Documents</i> , 2020, 34, 1219-1229	4.1	50
63	Pyrolysis of palm kernel shell with internal recycling of heavy oil. <i>Bioresource Technology</i> , 2019 , 272, 77	-8121	44
62	Benign-by-design N-doped carbonaceous materials obtained from the hydrothermal carbonization of sewage sludge for supercapacitor applications. <i>Green Chemistry</i> , 2020 , 22, 3885-3895	10	39
61	Fundamental Advances in Biomass Autothermal/Oxidative Pyrolysis: A Review. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 11888-11905	8.3	37
60	Balanced distribution of Brfisted acidic sites and Lewis acidic sites for highly selective conversion of xylose into levulinic acid/ester over Zr-beta catalysts. <i>Green Chemistry</i> , 2019 , 21, 6634-6645	10	36
59	Leaching of Alkali and Alkaline Earth Metallic Species from Rice Husk with Bio-oil from Its Pyrolysis. <i>Energy & Fuels</i> , 2014 , 28, 6459-6466	4.1	33
58	Kinetics and Mechanism of Steam Gasification of Char from Hydrothermally Treated Woody Biomass. <i>Energy & Company</i> ; Fuels, 2014 , 28, 7133-7139	4.1	32
57	Characteristics and mechanisms of phosphorous adsorption by rape straw-derived biochar functionalized with calcium from eggshell. <i>Bioresource Technology</i> , 2020 , 318, 124063	11	28
56	Volatile-char interactions during biomass pyrolysis: Understanding the potential origin of char activity. <i>Bioresource Technology</i> , 2020 , 316, 123938	11	28
55	A new method for removal of nitrogen in sewage sludge-derived hydrochar with hydrotalcite as the catalyst. <i>Journal of Hazardous Materials</i> , 2020 , 398, 122833	12.8	27
54	Cross-Polymerization between the Typical Sugars and Phenolic Monomers in Bio-Oil: A Model Compounds Study. <i>Energy & Discounty Study</i> .	4.1	24
53	Importance of Magnesium in Cu-Based Catalysts for Selective Conversion of Biomass-Derived Furan Compounds to Diols. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 5217-5228	8.3	23

(2020-2019)

52	Cross-interaction during Co-gasification of wood, weed, plastic, tire and carton. <i>Journal of Environmental Management</i> , 2019 , 250, 109467	7.9	23
51	Impacts of temperature on evolution of char structure during pyrolysis of lignin. <i>Science of the Total Environment</i> , 2020 , 699, 134381	10.2	23
50	Application of Biochar Derived From Pyrolysis of Waste Fiberboard on Tetracycline Adsorption in Aqueous Solution. <i>Frontiers in Chemistry</i> , 2019 , 7, 943	5	20
49	Volatile-char interactions during biomass pyrolysis: Cleavage of C-C bond in a E5 lignin model dimer by amino-modified graphitized carbon nanotube. <i>Bioresource Technology</i> , 2020 , 307, 123192	11	19
48	A Review on Biomass Gasification: Effect of Main Parameters on Char Generation and Reaction. <i>Energy & Description of Char Generation and Reaction a</i>	4.1	17
47	Progress of the development of reactors for pyrolysis of municipal waste. <i>Sustainable Energy and Fuels</i> , 2020 , 4, 5885-5915	5.8	16
46	Conversion and transformation of N species during pyrolysis of wood-based panels: A review. <i>Environmental Pollution</i> , 2021 , 270, 116120	9.3	16
45	Preparation of Coke from Hydrothermally Treated Biomass in Sequence of Hot Briquetting and Carbonization. <i>ISIJ International</i> , 2014 , 54, 2461-2469	1.7	13
44	Volatile-char interactions during biomass pyrolysis: Contribution of amino group on graphitized carbon nanotube to xylose evolution based on experimental and theoretical studies. <i>Fuel</i> , 2020 , 282, 118921	7.1	12
43	Sulfated TiO2 nanosheets catalyzing conversion of biomass derivatives: influences of the sulfation on distribution of Brfisted and Lewis acidic sites. <i>Journal of Chemical Technology and Biotechnology</i> , 2020 , 95, 1337-1347	3.5	12
42	Preparation of CaO-containing carbon pellet from recycling of carbide slag: Effects of temperature and HPO. <i>Waste Management</i> , 2019 , 84, 64-73	8.6	12
41	Nanofibers and amorphous Ni/Al2O3 catalysts Leffect of steric hindrance on hydrogenation performance. <i>Catalysis Science and Technology</i> , 2019 , 9, 4510-4514	5.5	11
40	Modification of Reactivity and Strength of Formed Coke from Victorian Lignite by Leaching of Metallic Species. <i>ISIJ International</i> , 2015 , 55, 765-774	1.7	11
39	Changes in Biochar Functional Groups and Its Reactivity after Volatile@har Interactions during Biomass Pyrolysis. <i>Energy & Fuels</i> , 2020 , 34, 14291-14299	4.1	11
38	Conversion of monosaccharides into levulinic acid/esters: impacts of metal sulfate addition and the reaction medium. <i>Journal of Chemical Technology and Biotechnology</i> , 2019 , 94, 3676-3686	3.5	10
37	Synergetic effects of hydrogenation and acidic sites in phosphorus-modified nickel catalysts for the selective conversion of furfural to cyclopentanone. <i>Catalysis Science and Technology</i> , 2021 , 11, 575-593	5.5	9
36	Co-hydrothermal carbonization of swine and chicken manure: Influence of cross-interaction on hydrochar and liquid characteristics. <i>Science of the Total Environment</i> , 2021 , 786, 147381	10.2	9
35	Impacts of Solvents on the Stability of the Biomass-Derived Sugars and Furans. <i>Energy & amp; Fuels</i> , 2020 , 34, 3250-3261	4.1	8

34	In situ characterization of functional groups of biochar in pyrolysis of cellulose. <i>Science of the Total Environment</i> , 2021 , 799, 149354	10.2	8
33	Coordination of Acidic Deep Eutectic Solventthromium Trichloride Catalytic System for Efficient Synthesis of Fructose to 5-Hydroxymethylfurfual. <i>Industrial & Description of Chemistry Research</i> , 2020 , 59, 17554-17563	3.9	7
32	Investigation into Properties of Carbohydrate Polymers Formed from Acid-Catalyzed Conversion of Sugar Monomers/Oligomers over Brlisted Acid Catalysts. <i>Energy Technology</i> , 2020 , 8, 1901476	3.5	5
31	Pyrolysis of cellulose with co-feeding of formic or acetic acid. <i>Cellulose</i> , 2020 , 27, 4909-4929	5.5	5
30	Conversion of Cellulose to Levulinic Acid/Ester over an Acid Catalyst: Impacts of Dispersion of Hydrogen Ions on Polymerization Reactions. <i>Energy & Energy </i>	4.1	5
29	Effects of calcium on the evolution of nitrogen during pyrolysis of a typical low rank coal. <i>International Journal of Coal Science and Technology</i> , 2020 , 7, 397-404	4.5	5
28	Clay as support for copper catalysts for the hydrogenation of furfural and phenolics. <i>Journal of Chemical Technology and Biotechnology</i> , 2020 , 95, 1400-1411	3.5	5
27	Integrated Leaching and Thermochemical Technologies for Producing High-Value Products from Rice Husk: Leaching of Rice Husk with the Aqueous Phases of Bioliquids. <i>Energies</i> , 2020 , 13, 6033	3.1	5
26	Effects of Glucose on Nitrogen Retention and Transformation during Copyrolysis with Fiberboard Waste. <i>Energy & Copyrolysis Waste</i> , 2020, 34, 11083-11090	4.1	5
25	Fates of heavy organics of bio-oil in hydrotreatment: The key challenge in the way from biomass to biofuel. <i>Science of the Total Environment</i> , 2021 , 778, 146321	10.2	5
24	Research progress on the preparation and application of biomass derived methyl levulinate. <i>Green Chemistry</i> , 2021 , 23, 9254-9282	10	4
23	Effects of Water Content and Particle Size on Yield and Reactivity of Lignite Chars Derived from Pyrolysis and Gasification. <i>Molecules</i> , 2018 , 23,	4.8	4
22	Decomposition of benzyl phenyl ether over char-supported Ni: The effect of char structures. <i>Fuel Processing Technology</i> , 2021 , 221, 106941	7.2	4
21	Importance of the synergistic effects between cobalt sulfate and tetrahydrofuran for selective production of 5-hydroxymethylfurfural from carbohydrates. <i>Catalysis Science and Technology</i> , 2020 , 10, 2293-2302	5.5	3
20	Effects of the molecular structure from pitch fractions on the properties of pitch-based electrospun nanofibers. <i>Journal of Applied Polymer Science</i> , 2021 , 138, 50728	2.9	3
19	Co-hydrothermal carbonization of swine manure and cellulose: Influence of mutual interaction of intermediates on properties of the products. <i>Science of the Total Environment</i> , 2021 , 791, 148134	10.2	3
18	Highly dispersive Ru confined in porous ultrathin g-CN nanosheets as an efficient peroxymonosulfate activator for removal of organic pollutants <i>Journal of Hazardous Materials</i> , 2022 , 435, 128939	12.8	3
17	N Evolution and Physiochemical Structure Changes in Chars during Co-Pyrolysis: Effects of Abundance of Glucose in Fiberboard. <i>Energies</i> , 2020 , 13, 5105	3.1	2

LIST OF PUBLICATIONS

16	Binder free 3D core-shell NiFe layered double hydroxide (LDH) nanosheets (NSs) supported on Cu foam as a highly efficient non-enzymatic glucose sensor <i>Journal of Colloid and Interface Science</i> , 2022 , 615, 865-875	9.3	2
15	Development of CO2/H2O activated biochar derived from pine pyrolysis: application in methylene blue adsorption. <i>Journal of Chemical Technology and Biotechnology</i> ,	3.5	2
14	Volatile-char interactions during biomass pyrolysis: Reactor design toward product control. <i>Renewable Energy</i> , 2022 , 185, 1-7	8.1	2
13	Hydrogenation of biomass derivatives over Ni/clay catalyst: significant impacts of the treatment of clay with NaOH on the reaction network. <i>Journal of Chemical Technology and Biotechnology</i> , 2021 , 96, 2569-2578	3.5	2
12	Correlation of composition, cooling rate and superheating temperature with solidification behaviors and microstructures of AlBiBn ribbons. <i>Materials Research Express</i> , 2019 , 6, 066539	1.7	1
11	Cross-interaction of volatiles from co-pyrolysis of lignin with pig manure and their effects on properties of the resulting biochar. <i>Biochar</i> , 2021 , 3, 391-405	10	1
10	Selective Conversion of Furfural into Diols over Co-Based Catalysts: Importance of the Coordination of Hydrogenation Sites and Basic Sites. <i>Industrial & Engineering Chemistry Research</i> , 2021 , 60, 10393-10406	3.9	1
9	Involvement of the organics in aqueous phase of bio-oil in hydrothermal carbonization of lignin <i>Bioresource Technology</i> , 2022 , 127055	11	1
8	Activation of waste paper: Influence of varied chemical agents on product properties <i>Waste Management</i> , 2022 , 146, 94-105	8.6	1
7	Production of methyl levulinate from cellulose over cobalt disulfide: The importance of the crystal facet (111). <i>Bioresource Technology</i> , 2021 , 347, 126436	11	O
6	Preparation and electrochemical performance of activated carbon microspheres from recycled novolak phenol formaldehyde. <i>Waste Management</i> , 2021 , 120, 635-641	8.6	O
5	Hydrogen- and Methane-Rich Clean Producer Gas from the Reforming of Bio-oil with Fe/AC Catalyst Prepared by a Stepwise Impregnation Method. <i>Bioenergy Research</i> ,1	3.1	O
4	Pyrolysis of cellulose: Correlation of hydrophilicity with evolution of functionality of biochar <i>Science of the Total Environment</i> , 2022 , 825, 153959	10.2	O
3	The fate of char in controlling the rate of heavy metal transfer from soil to potato. <i>Chemical Papers</i> ,1	1.9	
2	Pyrolysis behaviors of rapeseed meal: products distribution and properties. <i>Biomass Conversion and Biorefinery</i> ,1	2.3	
1	Hydrothermal treatment of furfural and sugar monomers and oligomers: a model-compound approach to probe the cross-polymerization reactions in heating bio-oil. <i>Biomass Conversion and Biorefinery</i> ,1	2.3	